Managing Water and Fertilizer for Sustainable Agricultural Intensification

IFA-FAI National Seminar Sustainable Fertiliser Management for Soil Health

16-17th March, 2015, Hotel The Grand, New Delhi, India

2

4

STATES	W ATER AVAILABILITY (m³ / capita/ year)	NET WATER TRANSFER IN THI FORM OF FOOD-GRAINS (billion m ³ / year)
Food Donors		
1. Punjab	3554	- 20.9
2. Haryana	2176	- 14.1
3. Uttar Pradesh	2922	- 20.8
	Mean 2884	- 55.8
Food Receivers		
1. Bihar	6898	15.3
2. Jharkhand	4580	9.3
3. Orissa	8710	4.8
	Mean 6729	

Water and Fertilizer Use Efficiencies Improve
when both Inputs are in Optimum Balance

Irrigation (mm)	WUE				N-use efficiency		
	N rate (kg ha ⁻¹)			N rate (kg ha ⁻¹)			
	0	40	80	120	40	80	120
No	2.8	4.4	6.3	3.6	5.3	4.8	0.9
rrigation(rainfed)							
<u>50</u>	<u>5.2</u>	<u>9.4</u>	<u>10.3</u>	<u>10.9</u>	<u>23.3</u>	<u>12.0</u>	<u>9.8</u>
120	5.7	8.4	10.3	9.0	23.0	17.6	8.8
300	5.1	7.0	8.6	8.8	19.5	20.0	14.8
Nitrogen and irrigation efficiency (kg grain k	on effec g ⁻¹ ferti	ts on W liser N) i	UE (kg g n wheat	rain ha [.] at Ludh	¹ mm ⁻¹) a iana, Indį	nd N-use a	. .
IWMI					(4	Adapted fro	om Gaji

A water-secure world

www.iwmi.org

1. Laser Leveler- Productivity Gains and Water Saving

Crop	Grain yi	eld (Kg/ ha)	Water saving over
(variety)	Laser leveled field	Without laser levelling	leveled field (%)
Paddy	6792	6500	38
Wheat	4750	4550	20
Sugarcane	112000	98750	24
S.Moong	500	375	20
Potato	10000	9000	25
Onion	10000	9000	20
Sunflower	2250	2000	20

Treatment	AE	-N	AE-P		AE	AE-K	
	2003	2004	2003	2004	2003	2004	
LL+NPK	18.75	20.00	86.54	92.31	56.25	60.00	
TL+NPK*	7.67	9.17	35.38	42.31	23.00	27.50	

Crops	Yield on	Yield on	Water	Yield
	beds	flat (t/ha)	savings (%	increase (%
	(t/ha)		over flat)	over flat)
Maize	3.27	2.38	35.5	37.4
Urd bean	1.83	1.37	26.9	33.6
Mungbean	1.62	1.33	27.9	21.8
Wheat	5.12	4.81	26.3	6.4
Pigeon	2.2	1.5	30.0	46.7
pea				
Gram	1.85	1.58	27.3	17.1
Average	-	-	30.04	28.57

2. Furrow Irrigated Raised Beds (FIRBS)

	Сгор	Saving in water (%)	Increase in yield (%)
	Sunflower	52	100-04
	Maize	53	12
	Chilli	53	15
	Cauliflower	63	27
	Potato	39	38
	Tomato	26	42
	Cabbage	41	56
	Bitter gourd	53	36.5
Nikowi hitutu wa Cingto Resint Agricult Av	Brinjal	44	30
	Banana	47	44

3. Drip-fertigation and vegetable based farming system with created groundwater resources and in canal commands

In most cities in sub-Saharan Africa, S. Asia and SE Asia, population growth has outpaced the development of sanitation infrastructure, making the management of urban waste, human excreta and wastewater ineffective. Investment in treatment will not catch up for decades.

Introducing business models to turn waste into an asset

- Solid waste and fecal sludge composting in Asia and Africa could save billions of US\$ per year, assuming a market for only 25% of the urban organic waste.
- Not a new concept, but many pilots not viable or sustainable
- Business models for resource recovery & reuse (RRR) target private and public investors and business schools.

