

Cropland Management Measures to Help Mitigate GHGs

 Cropland management, which includes nutrient management, has a GHG mitigation potential approaching 1,600 MT CO₂-equivalent/yr

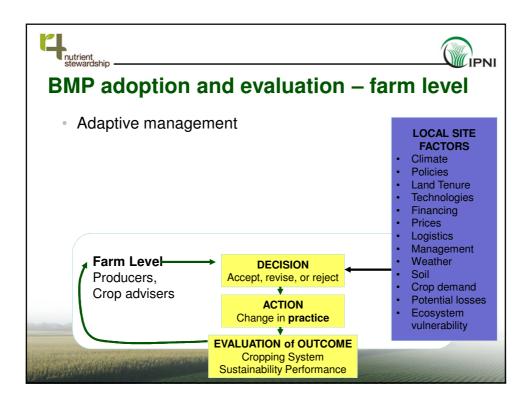
	Mitig	ative effec	ts ^a	Net mitigation ^b (confidence)		
Examples	CO ₂	CH ₄	N ₂ O	Agreement	Evidence	
Agronomy	+		+/-	***	**	
Nutrient management	+		+	***	**	
Tillage/residue management	+		+/-	**	**	
Water management (irrigation, drainage)	+/-		+	*	*	
Rice management	+/-	+	+/-	**	**	
Agro-forestry	+		+/-	***	*	
Set-aside, land-use change	+	+	+	***	***	

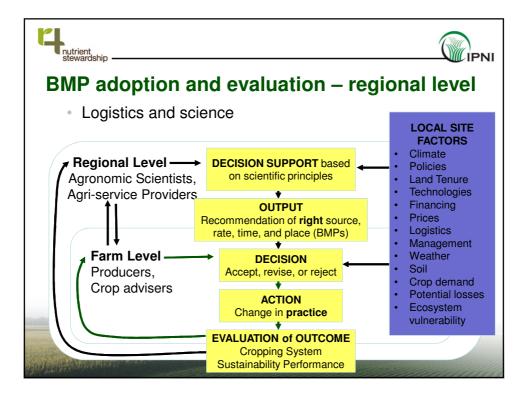
Smith et al. 2007. Agriculture. In Climate Change 2007: Mitigation. IPCC

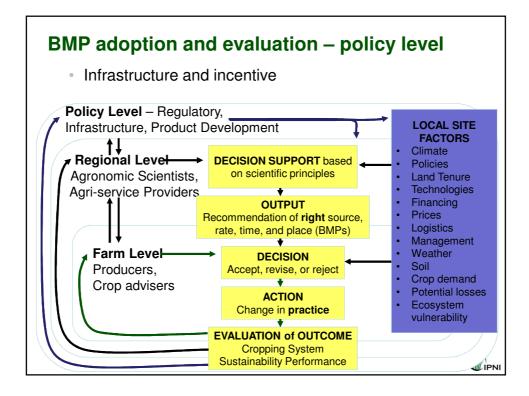
Soil Quality Change (as % over Fallow) under Different Management Practices & Cropping Systems

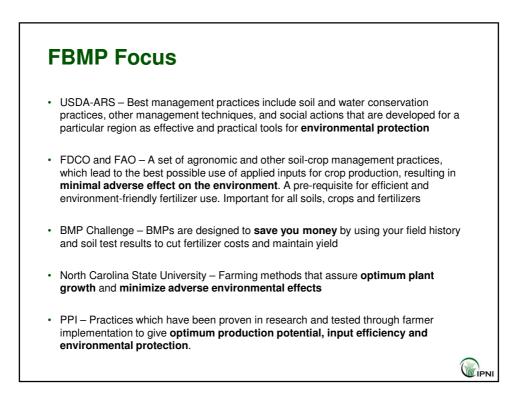
Treatment	Rice-Wheat	Rice-Lentil	Jute-Rice-Wheat
Control	-56.0	-8.0	-49.0
N-only	-	-11.7	-35.0
NPK-only	-10.8	-9.7	19.0
NPK+FYM	18.7	8.6	45.1

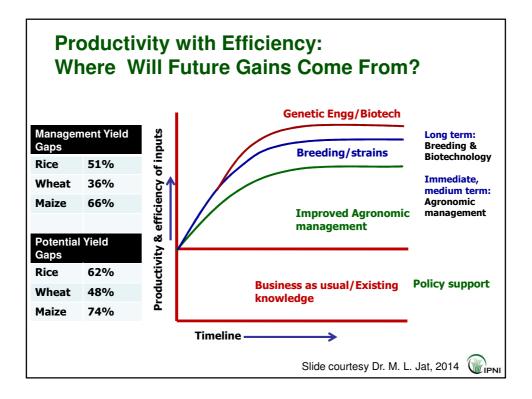
Mandal, B. (2005) Assessment and improvement of soil quality and resilience for rainfed production system. Completion Report, National Agricultural Technology Project. Bidhan Chandra Krishi Viswavidyalaya, Indian Council of Agricultural Research, New Delhi, pp. 30.

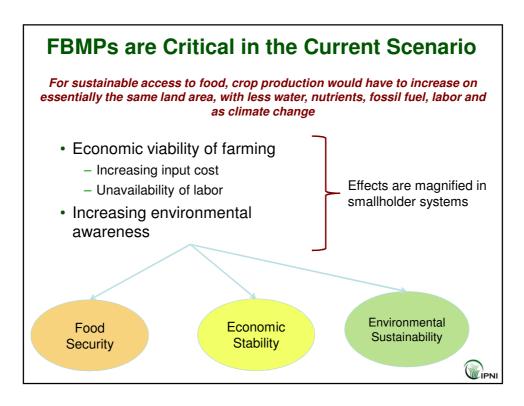

What is **FBMP**

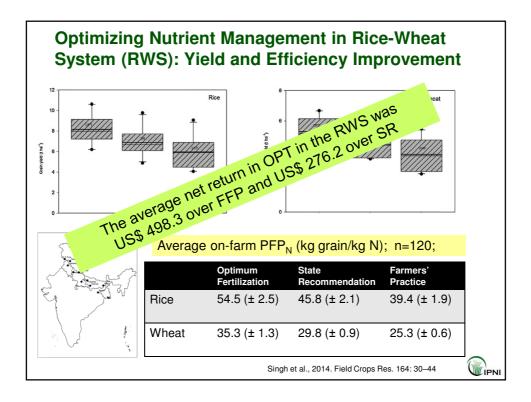

Fertilizer best management practices (FBMPs) are agricultural production techniques and practices developed through scientific researches and verified in farmers fields to maximize economic, social and environmental benefits

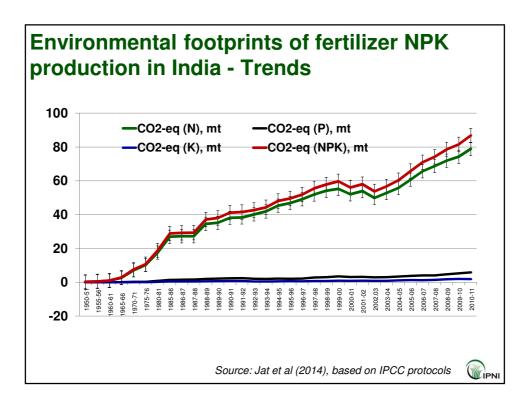

> FBMP is aimed at managing the flow of nutrients in the course of producing affordable and healthy food in a sustainable manner that protect the environment and conserve natural resources at the same time profitable to producers.


With FBMPs, farmers implement, under specific site, crop and soil conditions, the concepts and elements of balanced fertilization, site-specific nutrient management (SSNM), integrated plant nutrient management (IPNM), among others.





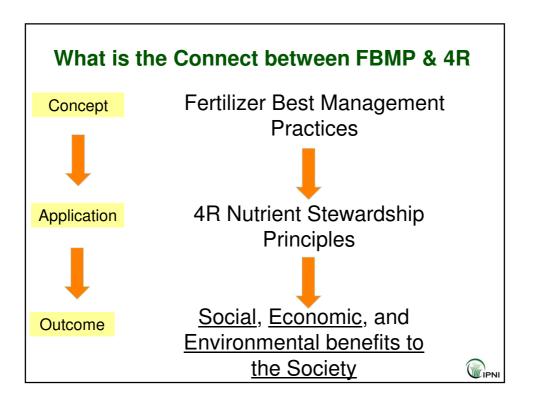




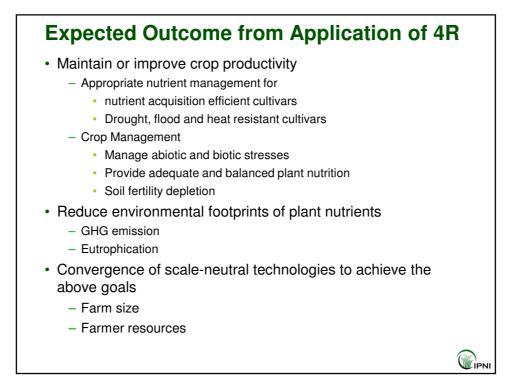
Inappropriate fertilizer use a growing challenge in India

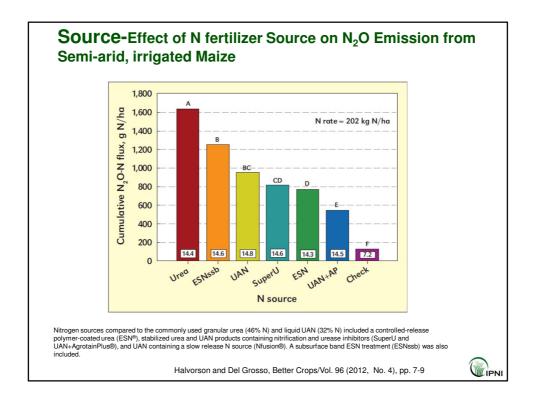
- Environmental Impacts:
 - It is estimated that 80% of $\rm N_2O$ emissions come from agriculture and burning in India
 - With crop N recovery estimated at 33-50%, unused N in soils can impact the environment
 - P losses in soil runoff, especially where fertilizer is surface applied
- Agricultural Impacts:
 - Nutrient mining of soils....severe depletion in many instances affecting crop productivity
 - Nutrient losses lead to lower NUE, lost profit
 - Nutrient losses lead to lower quality product, lost profit

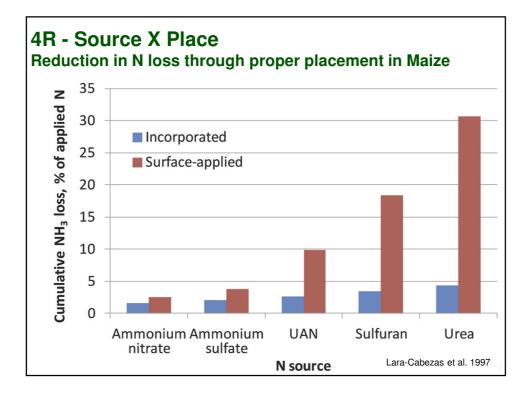
In India, adverse impacts are more commonly associated with unbalanced use, rather than overuse



4R Nutrient Stewardship — applying the **right** nutrient source, at the **right** rate, **right** time, and **right** place — is an essential tool in the development of sustainable agricultural systems.



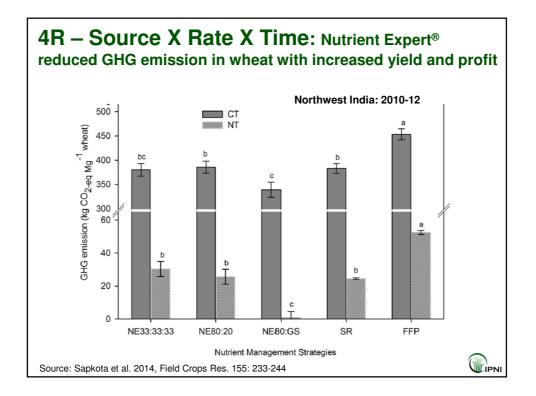

 Implementation of 4R Nutrient Stewardship can positively influence the sustainability of agricultural systems beyond the immediate benefits of improved crop nutrition and production.


4R: Sci FBMPs		ed Practi	cal	Choices	s to I	mplemen
Examples o	f key scientific	principles		IPN	NI, 2012.	. 4R Plant Nutritior
		Th	e Four	Rights (4Rs)		
	Source	Rate		Time		Place
Key Scientific Principles	Ensure balanced supply of nutrients	 Assess nutrie supply from a sources 		 Assess dyna crop uptake supply 		Recognize crop rooting patterns
	Suit soil properties	Assess plant demand		Determine ti loss risk	ming of	 Manage spatial variability
Examples o	of practical choi	ces				
Source	e	Rate		Time		Place
Commercia	I fertilizer • Test	soils for nutrients	 Pr 	e-plant	• E	Broadcast
Livestock m	anure • Calci	ulate economics	 At 	planting	• E	Band/drill/inject
 Compost Crop Reside 		nce crop removal		flowering	-	Variable-rate application

Treatment	Maize Grain Yield Mg ha ⁻¹ and AE (kg kg ⁻¹)						
	Maros (I	Maros (Indonesia) O I					
	2008	2009	2008	2009			
2-Split Fixed Rate	11.2 (58.7)	10.6 (46.8)	5.4 (30.1)	6.6 (36.9)			
3-Split Fixed Rate	11.4 (62.8)	10.5 (45.8)	5.6 (31.4)	6.7 (37.6)			
3-Split LCC1	12.3 (64.8)	11.1 (47.0)	6.0 (30.3)	7.0 (34.7)			
3-Split LCC2	12.6 (65.7)	12.1 (46.4)	6.1 (30.4)	7.3 (32.4)			
TIT		from increase	·				

$4R-Time:\ {\mbox{Effect}}$ of N Application time on Yield and Agronomic Efficiency of Irrigated Maize

			Time: in rice	GreenSe	eeker k	ase
Cultivar	N Management Strategy	Total N applied (kg/ha)	Rice grain yield (kg/ha)	Total N Uptake (kg/ha)	AE _N (kg/kg)	RE _N (%)
PAU 201	No N	0	3.99	57.8	-	-
	Three equal splits	120	6.96	131.7	24.7	61.6
	GreenSeeker-based	102	7.16	130.8	31.0	71.5
PUSA 44	No N	0	3.94	63.1	-	-
	Three equal splits	120	6.38	121.6	20.3	48.7
	GreenSeeker-based	97	6.37	117.0	25.1	55.6
HKR 127	No N	0	3.75	57.9	-	-
	Three equal splits	120	6.04	120.4	19.1	52.1
	GreenSeeker-based	102	6.19	117.7	23.8	58.6
				ay-Singh e		

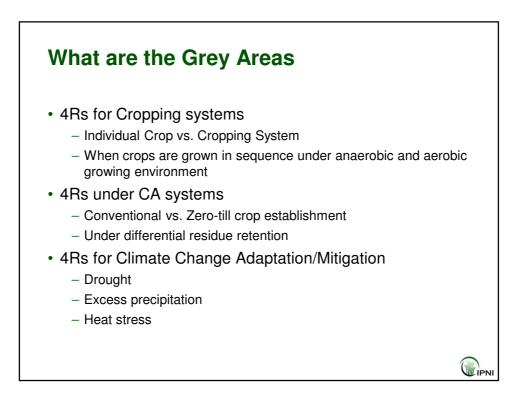

4R – Source X Rate X Time: Nutrient Expert® (NE) for Maize in India, Indonesia, and Philippines (2010-14)

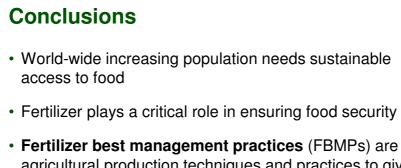
Parameter	Unit	Effect of NE (NE – FFP)							
		India	Indonesia	Philippines					
		(n = 412)	(n = 26)	(n = 190)					
Grain yield	t/ha	+1.27 ***	+0.92 **	** +1.10 ***					
Fertilizer N	kg/ha	—6 ns	-12 ns	s +3 ns					
Fertilizer P ₂ O ₅	kg/ha	-16 ***	—5 ns	s +18 ***					
Fertilizer K ₂ O	kg/ha	+22 ***	+15 **	+18 ***					
Fertilizer cost	USD/ha	—1 ns	+16 ns	+37 ***					
Gross profit	USD/ha	+256 ***	+234 **	** +267 ***					

4R – Source X Rate X Time: Nutrient Expert® in China (2010-13)

Parameter	Unit	Wh	eat (n = 2	290)	Maize (n = 541)			
		FP	NE	Soil test	FP	NE	Soil test	
Grain yield	t/ha	7.9	8.0	8.3	9.9	10.2	10.3	
Ν	kg/ha	271	162	237	230	158	202	
P ₂ O ₅	kg/ha	118	82	105	62	56	57	
K ₂ O	kg/ha	50	74	73	47	68	75	
Fert. cost	USD/ha	357	267	344	272	234	274	
Gross profit	USD/ha	2282	2417	2459	2902	3031	3006	
REN	%	17.5	30.2	22.5	18.5	29.1	23	
AEN	kg/kg	5.2	8.6	6.3	7.8	11.8	10	
REN: apparent recovery efficiency of N (increase in N uptake/applied N) AEN: agronomic efficiency of N (kg yield increase/kg applied N)								
							(

Current situation: farmers' yield ≈ attainable yield





What are the Grey Areas

Source

- Conventional vs. Enhanced Efficiency Fertilizer
- Commodity vs. Specialty Fertilizer
- Rate
 - Sole vs. Intercropping or Relay Cropping
 - When foliar application is part of the strategy
 - In high P fixing soils
- Time
 - Intercropping
- Place
 - Surface Application vs. Sub-surface Drilling vs. Fertigation at Root Zone

- Fertilizer best management practices (FBMPs) are agricultural production techniques and practices to give optimum production potential, input efficiency and environmental protection
- The 4R Nutrient Stewardship provides science-based practical choices for on-farm implementation of FBMPs
- Fine tuning of 4R strategies in specific crop growing environments and management practices are required through further research

