CROSSROADS

ASIA PACIFIC

Bridging the yield gap for food security: a case of Bangladesh

Jagadish Timsina (CIMMYT, Bangladesh & University of Melbourne, Australia)

Akbar Hossain (BARI, Bangladesh)

Saiful Islam (CIMMYT, Bangladesh)

Joost Wolf (WUR, Wageningen, Netherlands)

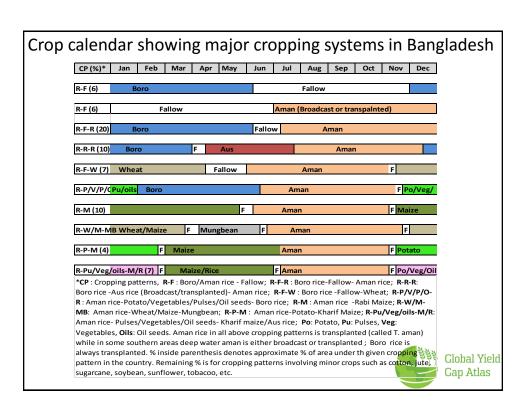
Martin van Ittersum (WUR, Wageningen, Netherlands)

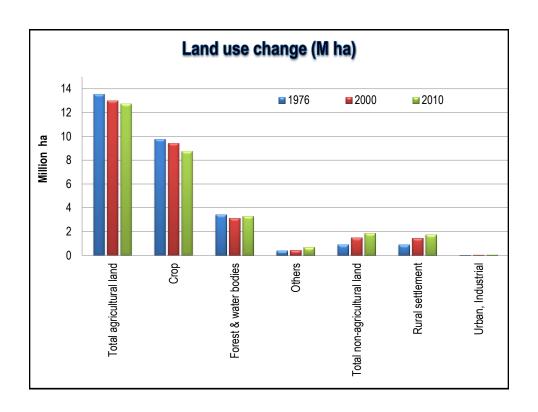
Outline of the presentation

- ➤ Concept of yield potential (Yp) and yield gap (Yg)
- ➤ Bridging yield gap for food security: Bangladesh
 - Dynamics of land use, CSs, food habits, etc.
 - GYGA Project: mapping for Yp& Yg
 - Factors affecting current & future food selfsufficiency
 - Cereal demand and supply in (2030 &) 2050
 - Fertiliser demand and supply in (2030 &) 2050
- ➤ Tech. and mgt. practices to bridge the Yg
- **≻** Conclusions

Definitions

- ➤ Potential yield (Yp) → yield simulated for optimal growing conditions; no water and nutrient stress; no yield losses by weeds, pests and diseases
- ➤ Water limited yield (Yw) → Yp but under rainfed
- ➤ Actual yield (Ya) → for single field, or average for a specified area
- Attainable/exploitable yield (Yatt): 85% of Yp or 80% of Yw
- \rightarrow Yield gap (Yg) \rightarrow (Yp Ya), or (Yw Ya)

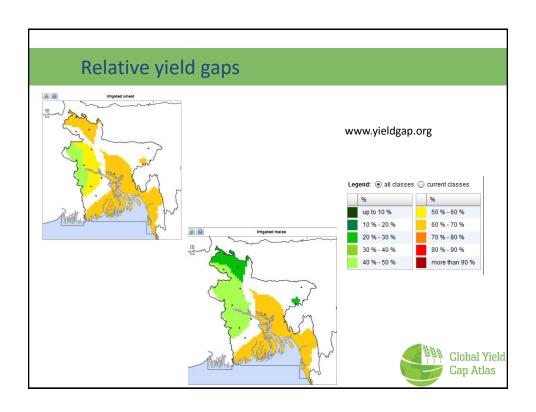

Bridging the yield gap?


- ➤ Yg = (Yp or Yw) Ya
- >Attainable/exploitable Yg: Yatt- Ya
- ➤ Aim for (bridging the Yg):
- Increase actual yield to as close as 80-85% of Yp

and/or

 50-85% of exploitable Yg closure = Ya + (Yatt-Ya)*(0.50 to 0.85)

Case study: Bangladesh


Current and future food demand (Med. pop. projections by UN. & demand by IFPRI's IMPACT model)

S	Demand/cap./annum (kg grain)				% Change,	National demand/annum (M ton grain)				% Change,
Projections	Maize	Wheat	Milled rice	All- grain	future annual demand/ cap.	Maize	Wheat	Milled rice	All- grain	future annual national demand
2010	9.9	25.9	170.5	198.9	-	1.50	3.91	25.8	30.1	-
2030	12.5	29.6	162.7	196.2	-1.36	2.31	5.47	30.1	36.3	+20.6
2050	14.0	34.7	145.8	184.5	-7.24	2.83	7.01	29. 5	37.3	+23.9

	Ma	ize	Wh	eat		Rice	
Yield levels (t ha ⁻¹)	Irrigated, rabi	Rainfed, K-1 & rabi	Irrigated	Rainfed	Irrigated, boro	Rainfed, aman	Rainfed, aus
Yield potential (Yp and Yw)	12.0	9.0	5.5	3.0	9.0	6.0	5.0
Actual yield – Ya	6.2	4.5	2.8	1.8	5.9	3.4	2.9
Yield gap - Yg	5.8	4.5	2.7	1.2	3.1	2.6	2.1
Yatt (85% of Yp or 80% of Yw)	10.2	7.2	4.7	2.4	7.7	4.8	4.0
Y-50% CI (50% gap closure)	8.2	5.9	3.7	2.1	6.8	4.1	3.4
Y-80% CI (80% gap closure)	9.4	6.7	4.3	2.3	7.3	4.5	3.8

Current status of cereal self-sufficiency

- Bangladesh is self sufficient in rice production (Supply-Demand ratio - SDR - in 2010 = 1.09) but cannot meet the rice demand in some years
- SDR for maize = 0.67
- SDR for wheat = 0.21
- SDR for all grain crops = 0.99

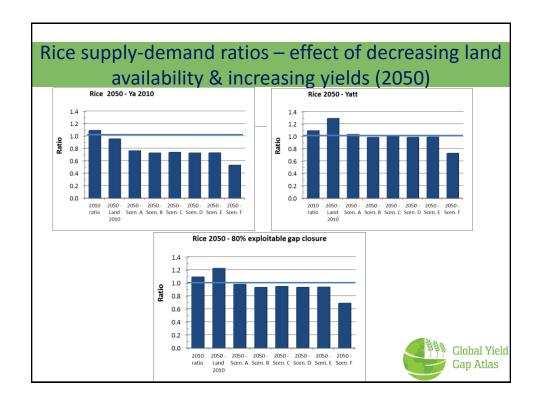
Factors reducing future food sufficiency

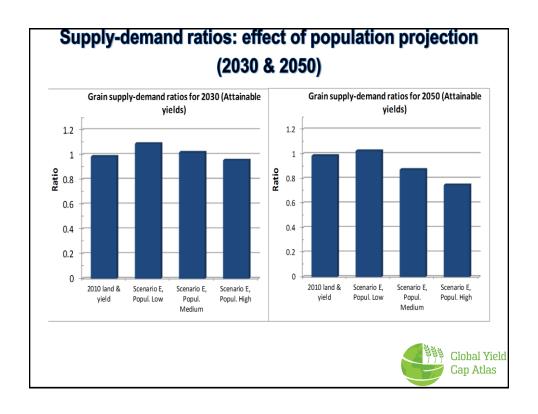
- Increase in population
 - 2010: 151 million;
 - 2030: 185 million;
 - 2050: 202 million
- Increase in food demand
 - population
 - Change in food consumption pattern due to increasing income & urbanization (e.g., poultry)
- Decrease in arable lands due to urbanization, increasing risk for flooding and salinization by sea level rise, etc.

Ways to improve future food sufficiency

- Increase crop yields
- Increase crop intensity: already approx. 200% at present
- Increase in cereal imports

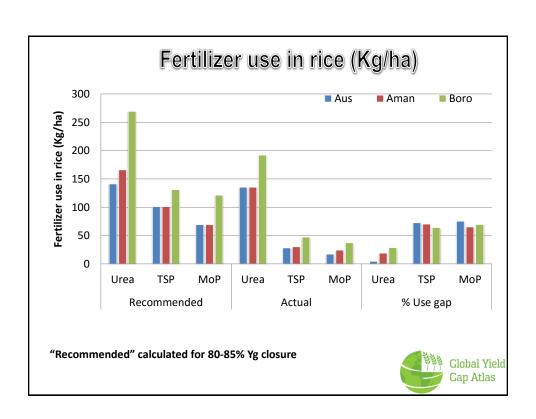
A priori: best option seems to be to increase crop yields

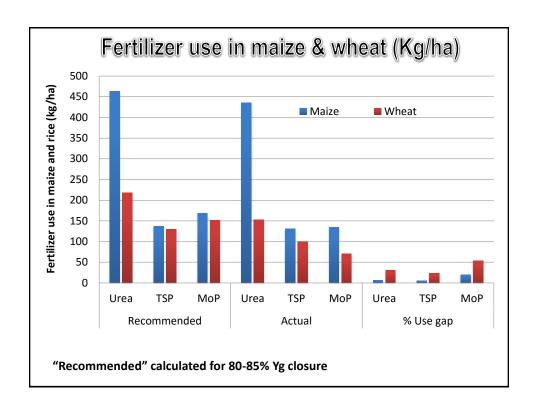


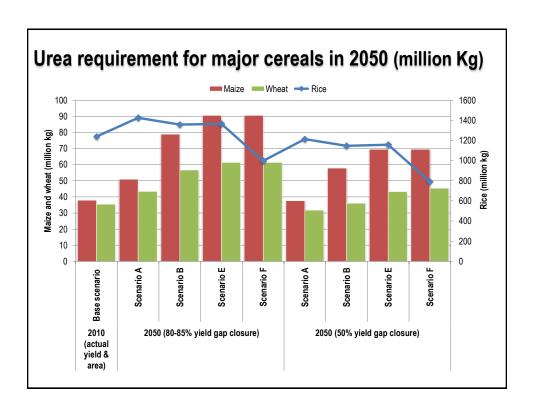

Food security analysis for Bangladesh

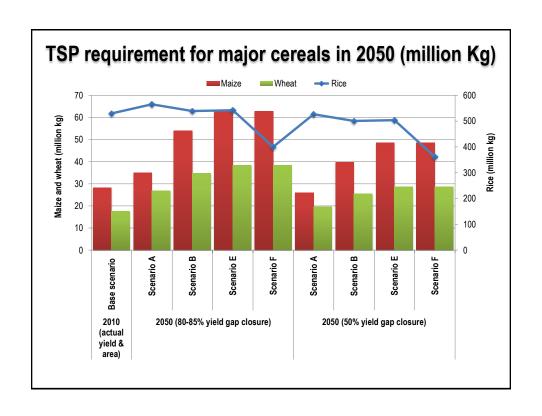
- ➤ Assess the degree of food self-sufficiency for different scenarios (for 2030) and 2050, considering
 - o Increase in population
 - Changes in diet
 - o Possible decreases in arable land areas
 - Changes in cropping patterns
 - Possible increase in yield levels

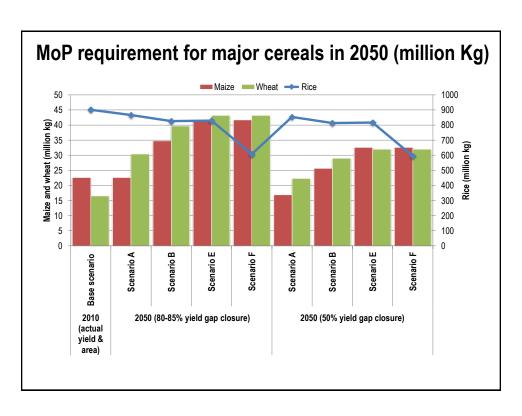
Scenarios for future land use change (2050)							
Scenario	Description						
Α	20% decrease in arable land (across the country)						
В	+ 20% decrease in boro rice and 10% increase in rabi maize & wheat areas (in north)						
С	+ 40% of fallow areas cropped with boro rice and 30% with maize & wheat (in south)						
D	+ 10% decrease in aman rice areas due to sea level rise (in south)						
Е	+ 10% increase in aus rice areas (in south) and 20% increase in kharif-1 maize areas (in north)						
F	+ 50% decrease in boro rice areas => high value crops (across the country) Global Yield Gap Atlas						




Total p	roduction es	stimates	for 2050 (r	n tons)
Year	Scenarios	Maize	Wheat	Rice
2010	Base	1.01	0.83	28.3
rels	Α	0.81	0.66	22.6
2010 Yield levels	В	1.23	0.86	21.6
Yiel	F	1.54	0.97	15.8
2050 (80-85%of \ Yp)	Α	1.33	1.08	30.6
2050 -85% Yp)	В	2.02	1.40	29.2
(80	F	2.52	1.55	21.6
Yg Yg	Α	1.07	0.87	26.6
2050 (50% Yg closure)	В	1.63	1.13	25.4
	F (2059)	2.03	1.26	18.7
Demand (med	l. Pop.), m tons (2050)	: Maize: Z.8; Wi	1eat: 1.0; Rice: 29.	.5


Calculations of fertilizer demand


- Fertilizer recommendations in BD developed for various yield goals & soil fertility levels across country
- Current (actual) fertilizer use, fertilizer demands for Yatt levels, & fertilizer use gaps calculated
- Fertilizer demands for various yield levels & scenarios under medium fertility (62% area) & low fertility (38%) for the whole country calculated
- Domestic fertilizer supplies were estimated
- Import = Domestic supply demand



Fertilizer requirements for major cereals (80-85% Yg closure)

- ➤ Requirements (total; 2012-13):
 - o Urea: 2500 million Kg; TSP: 700 million Kg
 - o MoP: 870 million Kg; DAP: 600 million Kg
- ➤ Requirements (R, W, M; 2050: Scenario A):
 - o Urea: 1518 million Kg; TSP: 627 million Kg
 - o MoP: 919 million Kg
- ➤ Current domestic production: ~40% urea, <10% TSP & DAP, and 0% MoP (for all; total).
- Large imports will be needed in future.

Source: Fertilizer Association of Bangladesh

Technologies & mgt. practices to bridge the Yg

- ➤ Variety
- ➤ Management
 - o Optimize fertilizer/nutrient use: e.g., SSNM
 - Water
 - Weed
 - Pest and diseases
- ➤ Upscaling of fertilizer technologies: e.g., Nutrient Expert, Nutrient Manager

Conclusions

- Supply-demand ratios cereals (SDRs) in 2010:
 - <<1 for maize and wheat
 - ~1 for rice
- National demands from 2010 to 2050:
 - will almost double for maize and wheat
 - increase by 15% for rice
- Supply-demand ratios cereals from 2010 to 2050:
 - will decrease for all three crops
 - will only be ~1 for rice in 2050 if 80 (Yw) or 85% (Yp) Yg closure will be achieved
 - population growth important driver

Conclusions

- ➤ High system production potential (e.g., R-M; ~20.0 t/ha) demands for high amount of fertilizer application
- ➤ Rice: Largest (65-75%) use gap for K; lowest gap (4-29%) for N.
- Maize & wheat: Largest (20-50%) use gap for K; lowest gap (5-23%) for P.
- ➤ Bridging yield gap & meeting food security currently & in future requires increased fertilizer use. Policy priority should be given for increasing domestic production but also imports to meet demand.

