

Bijay-Singh Punjab Agricultural University, Ludhiana, India

IFA Crossroads Asia-Pacific 2014

Maintaining healthy soils: challenges and opportunities for the fertilizer industry

'A soil is an entity – an object in nature which has characteristics that distinguish it from all other objects in nature'

"Upon this handful of soil our survival depends. Husband it and it will grow our food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it"

The affairs of the soil touch our daily lives most intimately.

'Man, despite his artistic pretensions, his sophistication, and his many accomplishments, owes his existence to a 15 cm layer of topsoil and the fact that it rains.'

"Essentially, all life depends upon the soil ... There can be no life without soil and no soil without life; they have evolved together."

Soil provides us grains for our food, cotton for our clothes and timber for our homes. It is one of the most important resources for mankind

SOIL IS A LIFE SUSTAINING NATURAL RESOURCE

- Everything that lives on the earth depends on soil. More than 99.7 percent of human food (calories) comes from the terrestrial environment (FAO Food Balance Sheet)
- We have a limited supply of fertile soils. Of the total of 13 B ha of land area on Earth, cropland accounts for 11%.
- We not only need to conserve and protect our soils but also ensure that these remain healthy

Soil Quality or Soil Health?

- The terms soil quality (favored by scientists) and soil health (favored by farmers) tend to be used interchangeably
- Characterization of soil quality by scientists focuses on analytical/quantitative properties of soil
- Characterization of soil health by farmers focuses on descriptive/qualitative properties of soil with a direct value judgment (unhealthy to healthy)

Soil Science Society of America

Why recent emphasis on soil health?

- Soil management is fundamental to all agricultural systems
- There is evidence for generally slow but widespread degradation of agricultural soils - - as erosion, loss of organic matter, nutrient imbalance, contamination, compaction, increased salinity and other harms
- Thus, in recent years research is being directed to devise measures of the health of soil and inform its management so that degradation is avoided

Maintaining healthy soils: challenges and opportunities for the fertilizer industry						
Agricultural goods	Soil-based delivery processes	Soil health depends on the				
	Nutrient capture and cycling	maintenance of four major f	unctions			
	OM input decomposition	Aggregate ecosystem				
Food and fibre	SOM dynamics	functions				
	Soil structure maintenance	1. Organic carbon				
	Biological population regulation	transformations				
Non-agricultural	Soil-based delivery	i\\				
services	processes	2 Nutriant availing				
Water quality and supply	Soil structure maintenance					
	Nutrient cycling					
Erosion control	Soil structure maintenance	3 Soil structure				
Atmospheric composition and climate regulation	SOM dynamics	maintenance				
Pollutant attenuation and degradation	Decomposition	4. Biological				
degination.	Nutrient cycling	population				
Non-agricultural pest and disease control	Biological population regulation	regulation				
Biodiversity conservation	Habitat provision					
	Biological population regulation	\boldsymbol{r}				
IFA Crossroads Asia-I	Pacific 2014	-	10			

The key to good soil quality is Soil Organic Matter (SOM)

- Organic C transformations, soil structure maintenance, nutrient cycling and biological population regulation – all controlled or influenced by SOM
- Two crucial characteristics of a healthy soil are the rich diversity of its biota and the high content of SOM
- SOM influences numbers, kinds and diversity of organisms in the soil as it is their basic energy source
- If the SOM is increased or maintained at a satisfactory level for productive crop growth, it can reasonably be assumed that a soil is healthy

IFA Crossroads Asia-Pacific 2014

Maintaining healthy soils: challenges and opportunities for the fertilizer industry

SOM – SON

- Due to fundamental coupling of microbial C and N cycling, the loss of soil organic matter has serious implications for the storage of soil organic N (SON)
- The loss of SON decreases soil productivity and agronomic efficiency of fertilizer N because SON regulates supply of mineral N to plants.
- Even in managed agro-ecosystems, SON plays a vital role in supplying N to crop plants and thus dictates the efficiency of applied fertilizer N

Fertilizers improve soil health if

- These are applied to supply to the plants adequate amount of nutrients and in a balanced proportion
- Their long-term use does not lead to reduced soil organic matter levels
- Their application does not lead to generation of excessive acidity in the soil
- Application of N fertilizers does not lead to large N deposition

17

Maintaining healthy soils: challenges and opportunities for the fertilizer industry

Nutrient imbalance leads to soil health deterioration

- Imbalance in N, P and K application; many a times due to non-availability of P and K at right time and at affordable prices
- Not applying deficient secondary and micronutrients
- Not following integrated management based on available organic and inorganic nutrient sources

Maintaining healthy soils: challenges and opportunities for the fertilizer industry							
Soil organic C after 15 years of rice-wheat							
cropping with different NPK treatments							
Fertilizer treatment (kg ha ⁻¹)							
N	Р	K	Organic C (%)				
0	0	0	0.17				
40	35	33	0.52				
80	35	33	0.61				
120	35	33	0.65				
120	0	0	0.42				
120	35	0	0.63				
120	0	33	0.46				
CD 5%			0.05				
Initial value of SOC measured in 1977 was 0.45% Source: Yadav <i>et al.</i> (1998)							
IFA Crossroads Asia-Pacific 2014							

М	Maintaining healthy soils: challenges and opportunities for the fertilizer industry					
Atmospheric transport and subsequent deposition has become the dominant reactive N distribution process						
	Year	Reactive N emitted as NO_x and NH_3 and then deposited to the Earth's surface as NO_y and NH_x				
	1860	34 Tg N year ⁻¹				
	1995	100 Tg N year ⁻¹				
	2050	200 Tg N year ⁻¹				
• 1 or l	N deposition to ec	cosystems in the absence of human influence is generally ~0.5 kg N ha ⁻¹ yr ⁻¹				

- Average N deposition rates exceeding 10 kg N $ha^{-1}yr^{-1}$ are already being observed in large regions of the world

IFA Crossroads Asia-Pacific 2014

20

Maintaining healthy soils: challenges and opportunities for the fertilizer industry							
Synthetic nitrogen undermines soil health by							
destroying soil organic carbon – a myth or reality							
Soil and	Study	Fertilizer N	Depth,	Total sc	oil N, g kg	y-1	
cropping	period	applied,	cm	Initial	Final	Change	Reference
system	1	kg ha ⁻¹ yr ⁻¹					
Inceptisol (sl)	1972-	100	0-22	0.72	0.67	-0.05	Mandal et al.
Rice-Wheat	1979	150	0-22	0.77	0.69	-0.08	(1984)
				-			
Inceptisol (sl)	1972-	300	0-30	0.96	0.87	-0.09	Manna et al.
Rice-Wheat-	2002						(2005)
Jute							
Mollisl (cl),	1977-	80	0-20	1.04	0.71	-0.33	Singh et al.
Rice -Wheat	1995	240	0-20	1.04	0.68	-0.36	(2000)
Entisol (sl),	1986-	100	0-15	0.50	0.52	-0.02	Kundu and
Rice-Wheat	1996	200	0-15	0.57	0.50	-0.07	Samui (2000)
Inceptisol (ls)	1988-	240	0-15	0.83	0.67	-0.16	Bhandari et al.
Rice-Wheat	1997						(2002)
IFA Crossroads Asia-Pacific 2014 24							

Maintaining healthy soils: challenges and opportunities for the fertilizer industry
Fertilizer N application leads to loss of SOM and SON because fertilizer N promotes the decomposition of crop residues and SOM through stimulation of microbial activity
BUT depletion in SOM and SON may also occur in no-N control plots – possibly due to cultivation of soil and other such practices which lead to soil disturbance
Fertilizer N application leads to increased total OC inputs (aboveground plus belowground NPP minus harvested yield) into the soil

IFA Crossroads Asia-Pacific 2014

25

Maintaining healthy soils: challenges and opportunities for the fertilizer industry							
Changes in soil C content in no-N control plots in long-term rice-wheat experiments in the Indo-Gangetic plains of India							
Location	Study	Fertilizer N,	Depth,	Soil organic C, g kg ⁻¹			
	period	kg ha ⁻¹ yr ⁻¹	cm	Initial	Final	Change	Reference
Faizabad	1977-1996	0	20	4.5	1.7	-2.8	Kumar and Yadav (2001)
Ludhiana	1983-2000	0	15	3.1	3.0	-0.1	Nayak et al.
Sabour	1984-2009	0	15	4.6	3.6	-1.0	(2012)
Kalyani	1986-2009	0	15	9.2	6.0	-3.0	
Raipur	1991-2007	0	15	5.1	4.8	-0.3	Urkurkar et al. (2010)
Ludhiana	1983-1997	0	15	3.1	2.1	-1.0	Yadav et al.
Pantnagar	1983-1997	0	15	14.2	5.1	-9.1	(2000)
Faizabad	1984-1997	0	15	3.7	2.2	-1.5	
Kalyani	1986-1996	0	15	9.2	4.0	-5.2	
IFA Crossroads Asia-Pacific 2014 26							

IFA Crossroads Asia-Pacific 2014

29

Maintaining healthy soils: challenges and opportunities for the fertilizer industry

New and improved fertilizer products

- Most of the present suite of fertilizer products was developed more than 50 years ago.
- Over the past 35 years, no "new" more substantially efficient fertilizer product has been developed – particularly no product affordable for use on food crops by farmers in less developed countries.
- New and improved fertilizers are critical to help feed the world's growing population by maintaining soil health, provide sustainable food security and protect the environment.

Resolution adopted by the UN General Assembly on 20 December 2013 to designate 5 December as World Soil Day and to declare 2015 the International Year of Soils

> The sustainability of soils is key to addressing the pressures of a growing population and that recognition, advocacy and support for promoting sustainable management of soils can contribute to healthy soils and thus to food-secure world and to stable and sustainably used ecosystems

Maintaining healthy soils: challenges and opportunities for the fertilizer industry
 2015: The International Year of Soils
 A combination of ecosystem processes and wise use of mineral fertilizers forms the basis of a sustainable soil health management system that has the capacity to produce food necessary to meet the demands of burgeoning population
 Fertilizer use must continue and expand to satisfy the food, fibre, and fuel demands of a growing world population, while sustaining soil resources and providing a healthy economy

IFA Crossroads Asia-Pacific 2014

33

Maintaining healthy soils: challenges and opportunities for the fertilizer industry

Sustainable nutrient management techniques allow farmers to maintain healthy and productive soil for crop production without degrading the environment

Nourish your crops, and they will nourish your soil!

Keep your soils healthy!

