The Third International Conference on Slow- and Controlled-Release and Stabilized Fertilizers IFA & New Ag International 12-13 March 2013, Rio de Janeiro, Brazil

Nitrification inhibitor decreases N₂O emission from soils amended with fertilizer N and sugarcane trash

V.P. Vargas¹, H. Cantarella¹, J.R. Soares¹; J.B. Carmo², S. Del Grosso³, A.A. Martins¹, and C.A. Andrade⁴

Sugarcane ethanol represents almost half of the fuel used in light vehicles in Brazil. One reason for replacing biofuels for fossil fuels is to reduce greenhouse gases (GHG) emissions. N fertilizers account for 23 to 40% of the GHG emissions and about 25% of the fossil fuel energy associated with sugarcane production. Nowadays, most of the sugarcane is not burned before harvest, which leaves a thick mulch on the field which affects GHGs emissions. Two studies were conducted to evaluate the effect of two nitrification inhibitors (NI), DCD and DMPP, on GHG emissions: a) under controlled conditions in which N fertilizer (ammonium sulfate, 100 kg ha⁻¹ N, with or without dicyandiamide - DCD) was applied to soils covered with 8 and 16 t/ha of sugarcane straw, plus a control with no plant residue; b) under field conditions, where 120 kg N/ha was applied as urea with or without DCD (10% of N rate) or DMPP (1% of total fertilizer N), plus the controlled-release fertilizer PSCU (polymer and sulfur coated urea⁵, containing 39% N and 11% S). In the field experiment sugarcane straw was removed. GHGs (N₂O, CO₂, and CH₄) were measured during 120 days in the laboratory experiment and 45 days in the field experiment.

In the laboratory study CO_2 emission from the soil increased with increasing straw rates as it was expected. The addition of N fertilizer caused an increase in CO_2 emission probably because of stimulation of straw decomposition. The soil, with or without straw, was a net sink for CH₄. The straw mulch significantly increased N₂O emission from soils treated with N fertilizer: +46% and +194% for treatments with 8 and 16 t/ha of straw respectively. Carmo et al (2012) also observed increased GHGs emission when sugarcane fields were covered with sugarcane trash. However, in the present study, the NI caused a sharp reduction of N₂O emission from fertilized soils: 65%, 62% and 73% when straw rates were 0, 8, and 16 t/ha (Table 1).

In the field, the reduction of N_2O emissions due to the use of enhanced-efficiency fertilizers was higher than the average values reported in the literature, especially for the treatments with the NIs. The average default N_2O emission reduction due to NI in IPCC models is 30% (IPCC, 2001). However, the data herein reported refer to a period of only 45 days. Data compiled by Snyder et al. (2009) indicated a reduction of 40-96% in N_2O emissions by the addition of NIs.

The controlled release fertilizer PSCU also showed great reduction in N_2O emission. In the present study the N fertilizer treatments were applied in a period in which the sugarcane plants were actively growing. Franco et al. (2011) showed that most N

¹ Agronomic Institute of Campinas, (IAC), Campinas, SP, Brazil;

² UFSCAR, Sorocaba, SP, Brazil;

³ USDA, Fort Collins, CO, USA;

⁴ Embrapa Meio Ambiente, Campinas, SP, Brazil

⁵ Produquímica Ltda, SP, Brazil

fertilizer is absorbed in this early stage of growth of sugarcane ration crops. These conditions may favor the lower N_2O emission not only from the conventional urea fertilizer, but also from the enhanced-efficiency formulations.

It was concluded that formulations or additives that reduce the rate of release of nitrate or soluble N into the soil, especially the NIs, may help decrease the environmental impact of sugarcane production associated with N fertilizer use.

Sugarcane	N ₂ O emission from soil		Reduction due
straw cover	Without DCD	With DCD	to DCD
t/ha	mg N/m ²		%
0	10,894 b	3,847 a	64.7
8	15,917 b	5,914 a	62.8
16	32,044 a	8,441 a	73.7
Average	19,618	6,067	69.1

Table 1. Cumulative emission of N_2O after 120 days in soil covered with sugarcane straw and treated with 100 kg/ha of N as ammonium nitrate, with or without DCD

Tukey (p < 0.05) comparing results in rows

Table 2. Cumulative emission of N_2O from incorporated urea (UR) with or without nitrification inhibitors (DCD and DMPP) and polymer and sulfur coated urea (PSCU) applied to a sugarcane field. N rate: 120 kg/ha. Experimental period: 45 days.

Treatment	$N-N_2O$ emission			
Treatment	$(g ha^{-1})$	% of N applied	Difference from urea (%)	
No N	312 b [#]		-	
UR	700 a	0.32	-	
UR+DCD	316 b	0.00	- 99	
UR+DMPP	331 b	0.02	- 95	
PSCU	438 b	0.10	- 68	

[#] Result from unfertilized control was subtracted for calculations of N₂O emissions. Means followed by same letter do not differ (Tukey, $p \le 0.05$).

References:

- Carmo, J.B., Filoso, S., Zotelli, L.C., Neto, E.R.S., Pitombo, L.M., Duarte-Neto, P.J., Vargas, V.P., Andrade, C.A., Gava, G.J.C., Rossetto, R, Cantarella, H., Neto, A.E., Martinelli, L.A. (2012). Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Global Change Biology Bioenergy, 5: 1-14. Doi:10.1111/j.1757-1707.2012.01199.x
- Franco, H.C.J., Otto, R., Faroni, C.E., Vitti, A.C., Oliveira, E.C.A., Trivelin, P.C.O. (2011). Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Research,121:29-40.
- Intergovernmental Panel on Climate Change(IPCC).(2001). Technological and economic potential of greenhouse gas emissions reduction. Working Group III: Mitigation, Third Assessment Report: Climate Change 2001. Accessed on 14/10/2011.Available at: <u>http://www.grida.no/publications/other/ipcc_tar/</u>
- Snyder, C.S., Bruulsema, T.W., Jensen, T.L., Fixen, P.E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133: 247–266.
- Vargas, V.P.; Cantarella, H.; Martins, A.A.; Soares, J.R.; Sousa, R.M.; Hackbarth, C.; Andrade, C.A. (2012). Dicianodiamida diminui a emissão de N₂O de solo incubado com diferentes níveis de palha de cana-de-açúcar e N mineral. In: FertBio 2012, 2012, Maceió. Anais da FertBio 2012. Viçosa: Sociedade Brasileira de Ciência do Solo, p. 1-4.