International Conference on Enhanced-Efficiency Fertilizers

An IFA-New Ag International Event 23-24 March 2010 Hotel Hyatt Regency, Miami, FL, USA

BIOSTIMULANT COATED FERTILIZERS PROVE ECONOMICALLY SIGNIFICANT INCREASES IN NITROGEN USE EFFICIENCY AND SUBSEQUENT CROP PRODUCTIVITY

Gary MURDOCH-BROWN

EcoCatalysts Pty Ltd., Australia

Biostimulant coated fertilizers prove economically significant increases in nitrogen use efficiency and subsequent crop productivity

Gary Murdoch-Brown CEO EcoCatalysts Pty Ltd

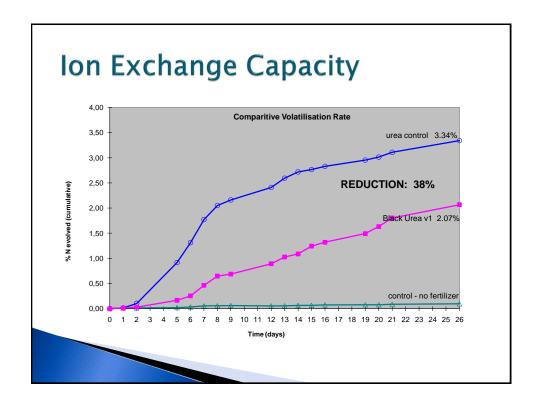
23 – 24 March 2010, Hotel Hyatt Regency, Miami, FL, USA International Conference on Enhanced-Efficiency Fertilizers

Context

- Fertiliser use critical to food security and responsible resource management
- Ironically 1t GHG per 1t fertiliser production
- Enhanced Efficiency Fertilizers are win/win solution

Organic Connection

- Soils of low biological fertility have greater loss pathways
- Improve biological fertility at fertilizer granules micro site in the soil
- Mimic nature


A solution is born

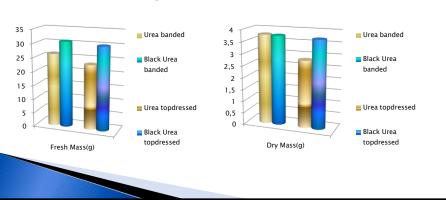
- Goal: agronomic and economic value to whole production chain (consumer to raw materials)
- LAUNCH[™] coating of unique combination of biostimulants and nutrient biocatalysts
- from humate derived organic acids, plant hormones, vitamins and minerals
- Stabilise nutrients by ionic exchange capacity and biological sequestration

Animation

An overly simplified view of the process follows

Link to animation

Bio warehousing


- Feed heterotrophs to outcompete chemoautotrophs and store nutrients in a stable "biological warehouse"
- Plant influences release rate, root exudates, usual N cycle

Dr James Harkryder, Cypress College Biology Dept. Test of biostimulants in Launch. Heterotrophic plate count, left petri with 2 drops of 100% bio-stimulant, right petri 2 drops of 10% diluted bio-stimulant.

Greenhouse

- Greenhouse experiments inconsistent
- Lack of microbial diversity and/or consistency probable cause
- Van Vuuren gets results

Inconsistent

- Laboratory results are not necessarily true to life
- Lack of microbial diversity and/or consistency probable cause but due to sample soil preparation
- Commercial scale field research the answer

Field Research

Ferguson, J. NITROGEN RETENTION in SOIL (% Total N)					
Low Moisture					
	2 weeks	4 weeks	6 weeks	8 weeks	10 weeks
Coated Urea	95%	84%	75%	70%	62%
Uncoated Urea	55%	30%	15%	3%	1%
Low - Medium Moisture					
	2 weeks	4 weeks	6 weeks	8 weeks	10 weeks
Coated Urea	93%	85%	70%	63%	52%
Uncoated Urea	66%	45%	28%	10%	4%
Optimum Moisture					
	2 weeks	4 weeks	6 weeks	8 weeks	10 weeks
Coated Urea	90%	80%	65%	52%	46%
Uncoated Urea	75%	42%	26%	8%	5%
Moderately High Mo	isture				
	2 weeks	4 weeks	6 weeks	8 weeks	10 weeks
Coated Urea	90%	76%	65%	50%	45%
Uncoated Urea	68%	40%	15%	4%	3%
Very High Moisture					
	2 weeks	4 weeks	6 weeks	8 weeks	10 weeks
Coated Urea	85%	70%	60%	52%	48%
Uncoated Urea	60%	35%	10%	2%	1%

Return on Investment

- EEF are value added inputs
- Seek minimum 2:1 Return On additional Investment

\$538/ha

Crop and Location: Irrigated Cotton - "Tundunna", Mungindi Application: Ground rig, September 2005, 390kgs/ha Trial Conditions: Replicated 2.4ha plots over three fields. Black Urea applied at only 5% less (390kgs/ha) than normal practice (410kg/ha) giving an increased application cost for Black Urea of \$22/ha.

Heavy cracking clay with a 8.1 pH and a CEC of 40. Average rainfall 550mm.

Result: Granular Urea: averaged 12.67 bales/ha
Black Urea: averaged 13.79 bales/ha

The additional 1.12 bales (@ A\$500/bale) less the increased application costs (-A\$22/ha) provides **a net profit increase to**

the grower of \$538/ha

\$165/ha

Crop and Location: Dryland Wheat – "Mayfield", Quirindi Application: Applied by air in crop, July 2004, 50kgs/ha.

Trial Conditions: Urea is usually applied at 80kgs/ha in crop but is difficult to maintain to be economically viable. Black Urea™ is tried at 50kgs/ha to determine if overall economics improve over an area of 200ha.

A black basalt soil with a 6.5 pH and a CEC of 28. Two good rain events through the season with a wetter than normal harvest.

Result: Urea average yield: 4.23 t/ha

nutrition cost of \$28/ha = 151kgs yield per \$1.00 spent.

Black Urea av. Yield: 4.89 t/ha,

nutrition cost of 23/ha = 212kgs yield per 1.00 spent.

Black Urea[™] delivered an increase in the overall yield economics of over 40%. A yield increase of 0.66t/ha and reduced input cost increase net margin by \$165/ha.

\$284/ha

Crop and Location: Irrigated Corn - "Goodgerwirri", Caroona

Application: Side dress, December 2004, 160kgs/ha

Trial Conditions: In order to evaluate any economic benefit of Black Urea on Corn compared to granular urea. Black Urea was applied to 90ha at 20% less the historical rate of granular urea (200kgs/ha)

Black self mulching clay-Vertosol with an 8.5 pH and a CEC of 64. High rainfall in December and January with a dry harvest.

Result: Granular Urea av. yield: 11.5 t/ha @ 142kgs per \$1.00

Black Urea[™] av. yield: 12.3 t/ha @ 149kgs per \$1.00

The additional 0.8t/ha netted the grower an increase of \$284/ha

\$36/ha

Crop and Location: Dry Land Pasture - "JNardi", Eureka

Application: Ground spread, September 2005, 80kgs/ha
Trial Conditions: In order to evaluate any economic benefit of
Black Urea on rye grass pasture directly compared to granular urea
on an intensely grazed dairy farm.

Red volcanic soils with a 5.0 pH and a CEC of 18. High summer rainfall.

Result: Granular Urea: after 21 days approx. 8t of DM/ha

Black Urea: after 21 days approx. 10t of DM/ha.

The additional 2t/ha dry matter netted an additional 5 days grazing giving the grower a calculated **nett increase of \$36/ha**

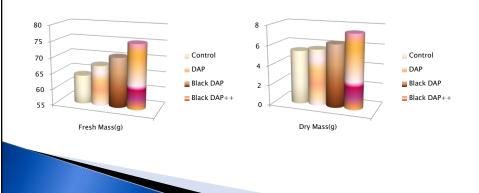
\$294/ha

Crop and Location: 3rd Ratoon Sugar Cane - Home Hill

Application: Applied by stool splitter, July 2009, 160kgs/ha.

Trial Conditions: Replicated plots of varying sizes from 0.33ha – 9.75ha over six fields. Black Urea applied at only 73% less (160kgs/ha) than normal practice (220kg/ha) giving a decreased application cost for Black Urea of \$44.90/ha.

oil light sandy loam with a 6 pH and a CEC of 5. Average rainfall 1100mm.


Result: Granular Urea: averaged 1342.04 production units per ha

Black Urea: averaged 1404.47 production units per ha

The additional income per ha of \$4/unit less the increased application costs (A\$44.90/ha) provides a net profit increase to the grower of \$294/ha

Future Innovations

- Continuous improvement
- van Vuuren adds lime and microbes with promising results

Environmental Impact

- ▶ 20-30% reduced fertiliser application is a 20-30% reduction in environmental cost.
- Possible reduced nitrification and N₂O production

Wrapping up

- EEFs have a niche applications.
- Ours is low biologically fertile soils
- More research
- Priority One economically and environmentally sustainable outcomes

Thank you

Further information:

- www.ecocatalysts.com.au
- www.blackurea.com
- EcoCatalysts Pty Ltd Brisbane, Australia

Phone: +61 7 3889 6944

Email: gmb@ecocatalysts.com.au