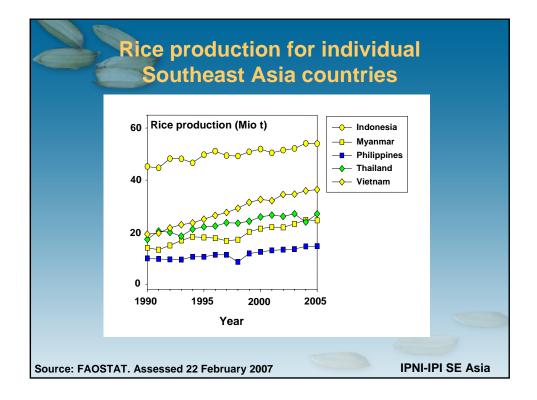


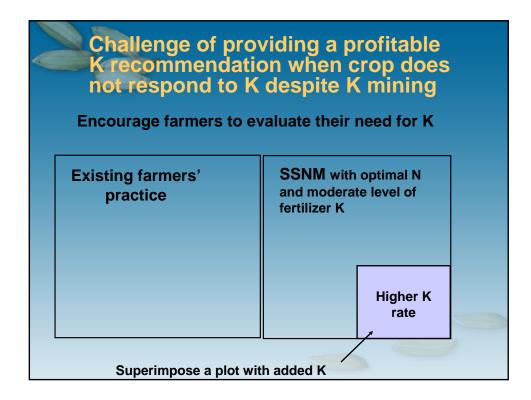
ount pH	sand (%) c		Grain yiel	
		Mean ± SD		1999 WS
1394 6.2 ± 0.2		37 ± 8	3.2 ± 0.7	
762 5.3 ± 0.7		35 ± 11	4.2 ± 0.6	3.8 ± 0.7
985 6.2 ± 0.5		55 ± 7	4.0 ± 0.7	3.8 ± 0.6
1106 5.7 ± 0.4		12 ± 7		3.8 ± 0.5
				3.7 ± 0.7 3.5 ± 0.7
	+ 35±11	30 ± 8	4.1 ± 0.8	3.5 ± 0.7
		4		1
	3054 6.8 ± 0.4 3906 6.3 ± 0.4 data	3054 6.8 ± 0.4 37 ± 11 3906 6.3 ± 0.4 35 ± 11 data	3054 6.8 ± 0.4 37 ± 11 29 ± 6 3906 6.3 ± 0.4 35 ± 11 36 ± 8 data	3054 6.8 ± 0.4 37 ± 11 29 ± 6 4.2 ± 0.7 3906 6.3 ± 0.4 35 ± 11 36 ± 8 4.1 ± 0.8

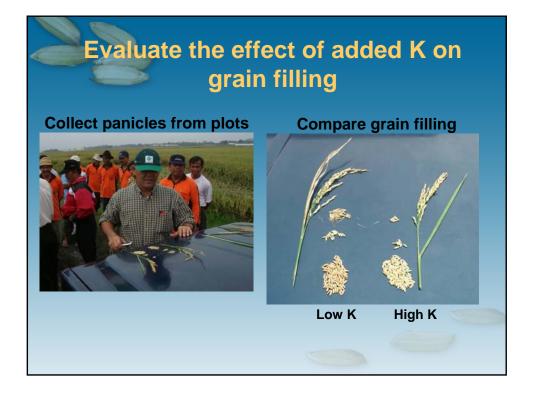
Hybrid seed companies are source of fertilizer information for maize farmers

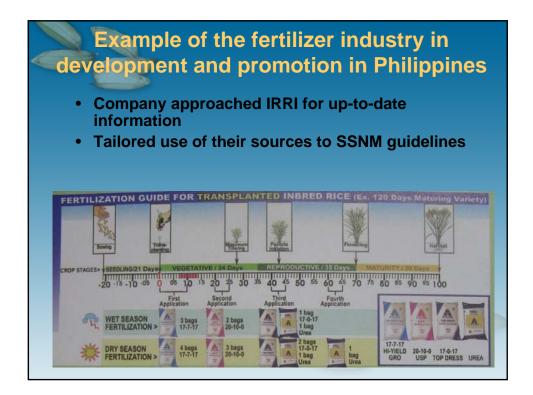
 SEAP IPNI & IPI is coordinating a project developing SSNM for maize


• Location-specific nutrient problems can be missed : Example of P needs on andisol in N. Sumatra

Use of SSNM to estima N requirement for m The efficiency of fertilizer maize than	aize and r N use is high	ice
N use efficiency (kg grain increase/kg N applied) \rightarrow	25	33
Crop response to N (t/ha) \downarrow	Fertilizer N ra	te (kg/ha)
1	40	30
2	80	60
0	120	90
3		
4	160	120
•	160 200	120 150

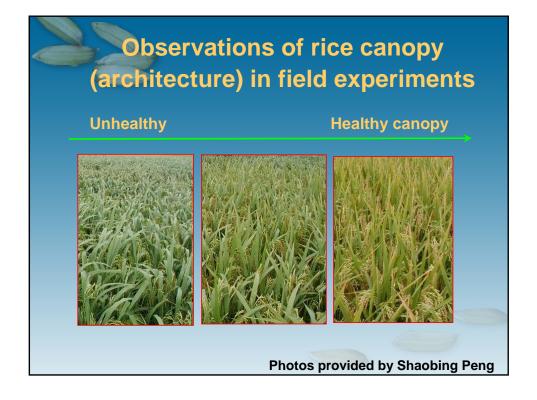

		in favora		ated env	higher for vironments high			
Crop	Yield target	get limited gap	AE (kg/kg)	Fertilizer N needed (kg/ha)				
	(t/ha)		-	-		(t/ha)		Per ton of response
Rice	7	3	4	25	40	160		
Maize	8	2	6	33	30	180		





		ig new concepts new concepts in rice on
	1987	2007
Key message	'Reduce N loss'	'Feed crop needs'
Total N rate	Fixed by season	Determined by N response and AEN
Key N component	Basal incorporation	'Moderate' early N, variable within season rate
Key efficiency parameter	Recovery efficiency	Agronomic efficiency
PK rate	Fixed	Decision support, input = output
K application	All basal	Split, enable farmer experimentation





		h soil testing
•	Flooding a soil changes s nutrient availability	soil chemistry and
•	Effectiveness of soil testi on flooded rice soils than	
	Experiences with rice	Alternatives
N	No relationship between soil analysis and yield without N	Estimate based on texture, organic inputs & cropping
Ρ	Flooding increases P availability	Use past fertilizer P use
K	Crop responses to K when soil K is above critical level	Mineralogy & use of K addition plots
Zn	Labs with reliable analyses often not readily available	Use of Zn addition plots

