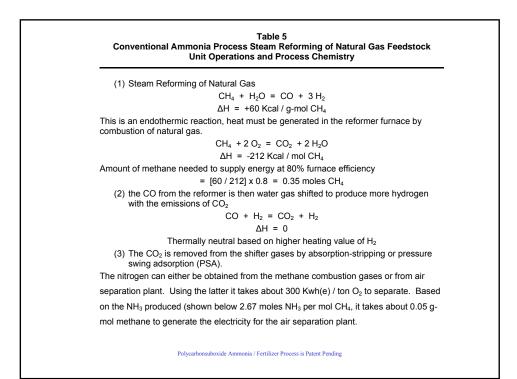
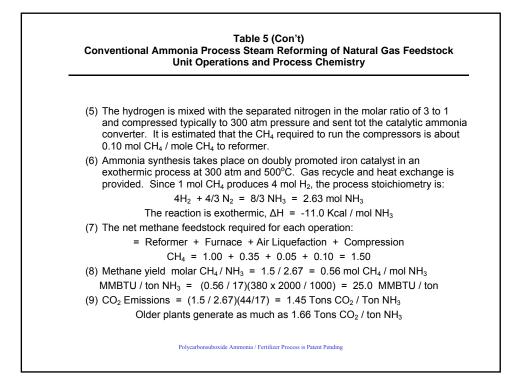


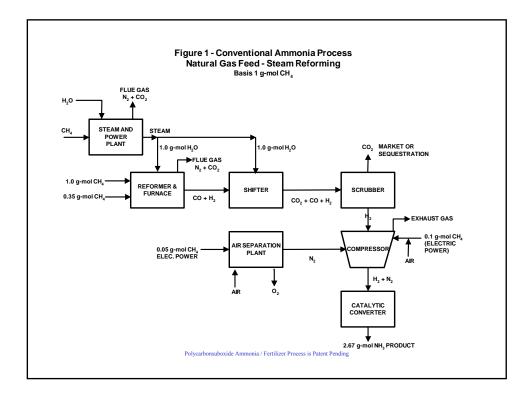
	Tal	ole 1					
Global Energy Consumption by Energy Source							
and Equivalent CO ₂ Emissions (1995)							
Source	EJ/year	%	GT(C)/yr				
~ .							
Coal	91	23.7	2.5				
Oil	128	33.2	2.6				
Gas	71	18.4	1.0				
Nuclear	19	4.9					
Hydro	21	5.5					
Biomass	55	14.3					
T - 4 - 1	295	100.0	(1(2) 4 CT CO))/2				
Total	385	100.0	6.1 (22.4 GT CO ₂) / y				
	5×10^{15} BTU = 0.95 Q of C as CO ₂ per year	uads					
JI(C)/yI = 10 tons	of C as CO_2 per year						

	ble 2
Distribution of W Energy-Consuming Sector	Yorld CO ₂ Emissions % of World CO ₂ Emissions
	-
Power and Heat Generation	47
from Industry	47
Transportation	22
Commercial and Residential	31
Total	100
Total CO ₂ Emission	6.1 GT(C)/yr

U.S. Distr	Table ibution of CC		s (1995)	
Energy Sector	Major Fuel	Quad	GT(CO ₂)/yr	%
Electric Power	Coal	20	2.15	35
Automotive Transport	Oil	35	2.00	45
Heating Systems	Gas	21	1.21	20
U.S. Total		76	6.16	100
Quad = 10 ¹⁵ BTU J.S. Contribution to World = 2	27%			

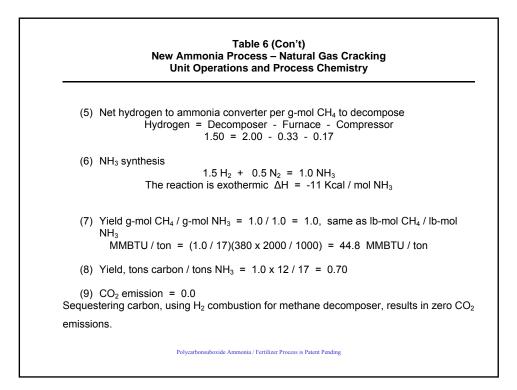

	Table 4							
Ammonia Production and CO ₂ Emission from Ammonia Plants Units in Millions Of Tons								
Worldwide Production, NH ₃	173	180						
Worldwide Emission CO ₂	288	302						
U.S. Production, NH ₃	18	14						
U.S. Emission CO ₂	30	23						
Total World CO ₂ Emission	23,000	24,000						
Contribution by Worldwide NH ₃ Production - %	1.25	1.26						
Contribution by U.S. NH ₃ Production - %	0.13	0.10						
*CO ₂ Emission calculated based m CO ₂ / ton NH ₃	ainly on natural gas feeds	stock, generating 1.66 Tons						

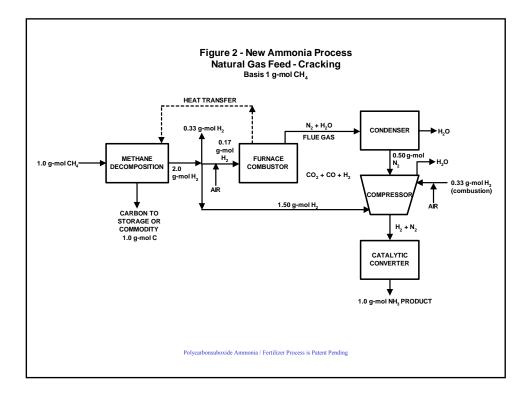

Ammonia Production Based on Hydrogen Production


Conventional Processes from Fossil Fuels Natural Gas Reforming Steam-Oxygen Coal Gasification

Alternative Energy Sources with Electrolysis of Water to Produce Hydrogen with Zero CO₂ Emission Nuclear Power Solar Power Wind Power Geothermal Power Renewable Biomass Power & Gasification

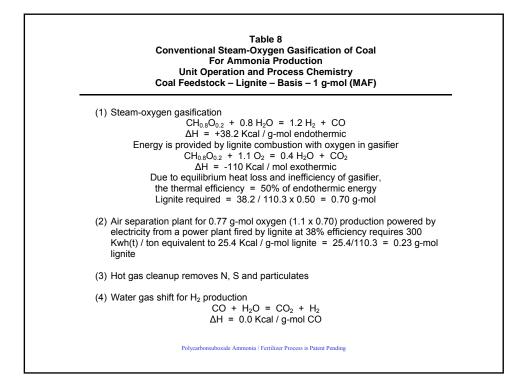
Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending

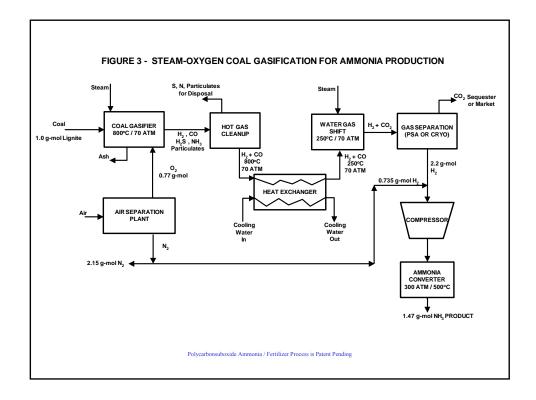


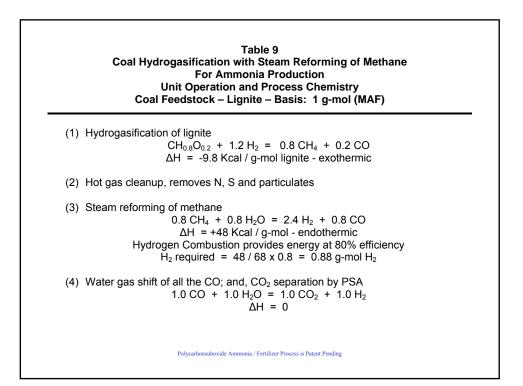


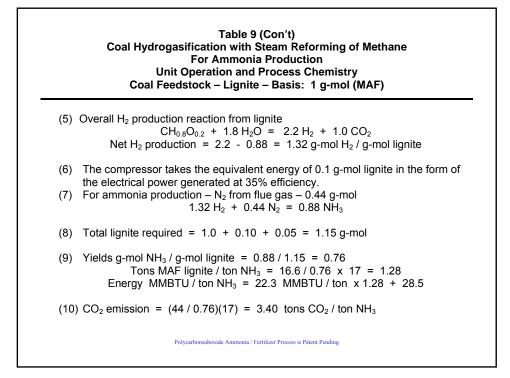
Carbon as a Coproduct of
Ammonia Production
Carbon Produced by Thermal Decomposition of Methane
Energy Requirement is Low by Plasma or Thermally
Carbon Use – Vulcanization of Tire Rubber
Strengthen Plastics
Printing Inks
Clean Carbon – As Clean Fuel for Combustion Turbines in
Combined cycle Power Production
Benefits - Building Materials Carbon Bricks
As a soil Conditioner
Ammonia Production with Zero CO ₂ Emission

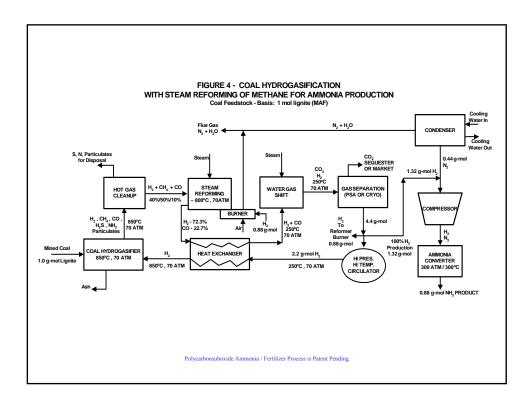
Carbon easier to Sequester than CO₂ As Landfill or Placed into Depleted Mines Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending

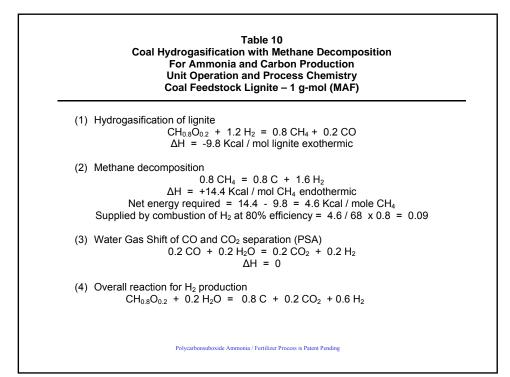

	Table 6 New Ammonia Process – Natural Gas Cracking Unit Operations and Process Chemistry
(1)	The thermal decomposition of methane is conducted by a hydrogen gas fired tubular reactor. Practically complete decomposition to C and H ₂ takes place at temperatures of about 900°C and pressures of less than 5 atm.
	$CH_4 = C + 2 H_2$ $\Delta H = +18 \text{ Kcal / mol CH}_4 \text{ endothermic}$
(2)	The energy is provided by the combustion of hydrogen with air $H_2 + \frac{1}{2}O_2 = H_2O$ $\Delta H = -68 \text{ Kcal / mol H}_2 (HHV)$
Th	e amount of H ₂ required to decompose 1 mol of CH ₄ at 80% thermal efficiency = $(18 / 68)(0.8) = 0.33$ g-mol H ₂
(3)	The nitrogen for the $\ensuremath{NH}\xspace_3$ synthesis is obtained from the flue gas combustion of hydrogen
	$H_2 + 0.5 O_2 + 1.88 N_2 = H_2O + 1.88 H_2$ For 0.33 mol H ₂ , 0.33 x 1.88 = 0.62 mol N ₂ is produced.
(4)	An additional 0.17 mol H_2 is required to drive the gas combustion compressor t compress the gases to 300 atm and 300°C.
	Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending

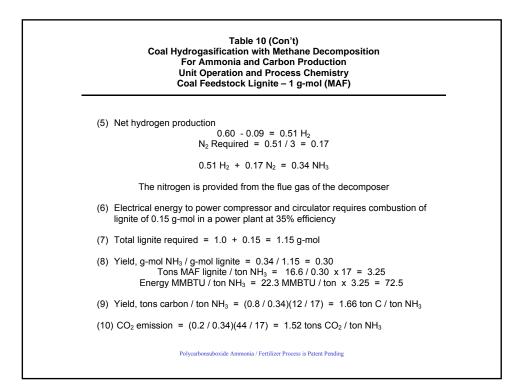


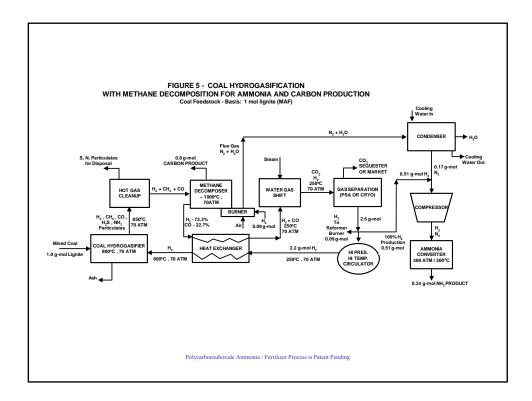

Table 7 Basic Data for Coal and Biomass Feedstocks Used in the Study Composition and Thermodynamic Data*								
Feedstock	Biomass Wood	Bituminous Kentucky Coal	Lignite N. Dakota Coal	Sub- bituminous Wyodak Coal	Alaskan Beluga Coal	Sewage Sludge		
Composition (v	wt%)	1	1		1			
С	45.86	67.02	43.37	49.95	49.33	28.55		
Н	5.27	4.54	2.78	3.51	4.00	4.09		
0	36.07	7.22	13.97	12.58	15.56	6.03		
H ₂ O	11.67	8.60	30.10	26.40	21.78	9.82		
Ash	0.66	8.34	8.30	6.03	8.67	36.53		
S	0.04	2.85	0.81	0.60	0.12	1.36		
Ν	0.43	<u>1.43</u>	<u>0.67</u>	0.93	0.54	3.62		
Molar Composition (MAF)	CH _{1.33} O _{0.59}	CH _{0.81} O _{0.08}	CH _{0.77} O _{0.24}	CH _{0.84} O _{0.19}	CH _{0.97} O ₀₂₄	CH _{1.72} O _{0.4}		
MW	22.82	14.09	16.61	15.88	16.81	20.44		

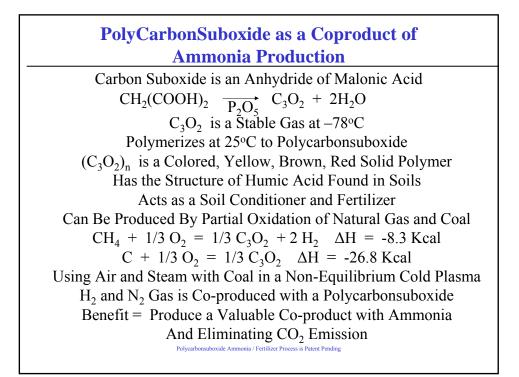

Bituminaura Lignite Sub-							
Feedstock	Biomass Wood	Bituminous Kentucky Coal	N. Dakota Coal	bituminous Wyodak Coal	Alaskan Beluga Coal	Sewage Sludge	
11							
Heating Value (HH BTU/lb MF	-8800.0	-13650	-10254	-11730	-11082	-5510	
kcal /kg MF	-4888.9	-7583.3	-5696.7	-6516.7	-6156.7	-3061.1	
kcal / q-mol MAF	-112.8	-119.0	-110.3	-115.3	-117.5	-115.9	
Heat of Formation	(MAE)						
kcal/kg	-1214.4	-183.0	-593.0	-461.7	-584.9	-1769.7	
?H _F kcal/g-mol	-27.7	-2.6	-9.8	-7.3	-9.8	-36.2	
Heat Capacity							
(kcal/Kg MF / °C)	0.570	0.315	0.315	0.315	0.315	0.250	
kcal/kg mol MF/ °C	13.00	4.44	5.23	5.00	5.30	5.11	
Malatan				11		1	
Moisture Mol H ₂ O / mol C	0.170	0.086	0.462	0.353	0.294	0.230	
MAF	Moisture A		0.402	0.555	0.294	0.230	
MF	Moisture Fr						
HHV	Higher Hea	ting Value					
MW	Molecular \	Veight					
*From various sou	rces, thermo	dynamic tables a	and calculat	ted values			

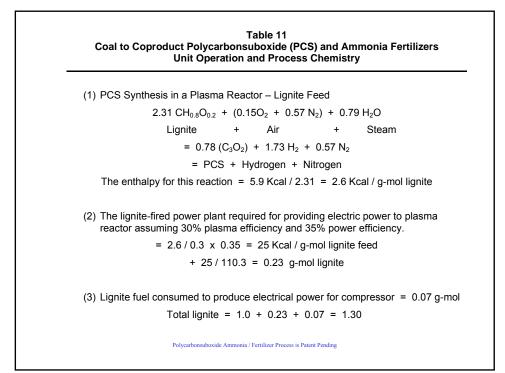


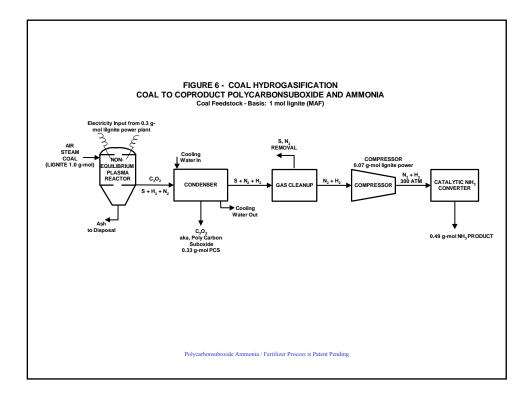

	Table 8 (Con't) Conventional Steam-Oxygen Gasification of Coal For Ammonia Production Unit Operation and Process Chemistry Coal Feedstock – Lignite – Basis – 1 g-mol (MAF)
(5)	CO_2 gas separation – Pressure Swing Adsorption (PSA) or cryogenic
(6)	$\begin{array}{rllllllllllllllllllllllllllllllllllll$
(7)	For ammonia production, N ₂ supplied from air separation plant 2.2 H ₂ + 0.735 N ₂ = 1.47 NH ₃
(8) (9)	Gas compressor compresses gas from 70 atm to 300 atm Requires 10 Kcal lignite (0.1 g-mol) producing electricity at 30% efficiency Total amount of lignite consumed = $1.00 + 0.70 + 0.23 + 0.10 = 2.03$
(10)	Yield g-mol NH ₃ / g-mol lignite = $1.47 / 2.03 = 0.724$ Tons MAF lignite / ton NH ₃ = $16.6 / 0.724 \times 17 = 1.35$ Energy = 22.3 MMBTU x $1.35 = 30.1$ MMBTU / ton NH ₃
(11)	CO_2 emission = (2.03 / 1.47)(44 / 17) = 3.57 Tons CO_2 / ton NH_3
	Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending











Coal to Coproduct Polycarbonsuboxide (Po	Table 11 (Con't) Coal to Coproduct Polycarbonsuboxide (PCS) and Ammonia Fertilizers Unit Operation and Process Chemistry				
(4) Ammonia formation at 300 atm and 500°C					
$1.73 H_2 + 0.57 N_2 = 1$.14 NH ₃				
(5) Ammonia Yield g-mol NH_3 / g-mol lignite =	1.14 / 2.31 = 0.49				
Net yield = 0.49 / 1.30 = 0.38 g-m	ol NH $_3$ / g-mol lignite				
Tons lignite / ton $NH_3 = (16.6 / 0)$	0.38)(17) = 2.56				
Tons lignite / ton NH_3 = 22.3 x 2.56 =	57.0 MMBTU / ton NH_3				
CO_2 Emission = 0.0 from	n process				
Tons PCS / ton $NH_3 = (0.78 / 1.1)$	4)(68 / 17) = 2.74				
CO_2 from electrical production = $(0.3 / 1.14)(44 / 1.14)(1.$	$(17) = 0.64 \text{ tons } CO_2 / \text{ ton } NH_3$				
Polycarbonsuboxide Ammonia / Fertilizer Process	s is Patent Pendine				

Process	Conventional Nat. Gas Reforming	Nat. Gas Cracking to Carbon	Coal Steam- oxygen gasification	Coal Hydrogasification with Gas Reforming	Coal Hydrogasificati on with Gas Cracking	Coal to Coproduct Polycarbonsub- oxide (PCS)
Feedstock	Nat. Gas	Nat. Gas	Lignite	Lignite	Lignite	Lignite
						1
Energy Consumption MMBTU/ton NH ₃	25.0	44.8	30.1	28.5	72.5	57.0
Coproduct Carbon Tons C / ton NH ₃	0.00	0.70	0.00	0.00	1.66	2.74*PCS
CO ₂ emission Tons CO ₂ / ton NH ₃	1.45	0.00	3.57	3.40	1.52	0.64
Major Capital Equipment Units	Steam Plant Reformer Furnace Water Gas Shift CO ₂ Separator Air Separator Compressor NH ₃ Converter	Methane Decomp. Flue Gas Condenser Compressor NH ₃ Converter	Coal Gasifier Air Separator Water Gas Shift CO ₂ Separator Compressor NH ₃ Converter Heat Exchanger	Hydrogasifier Steam Reformer Water Gas Shift CO ₂ Separator Compressor NH ₃ Converter Heat Exchanger	Hydrogasifier Methane Decomp. Water Gas Shift CO ₂ Separator Compressor NH ₃ Converter Heat Exchanger	Plasma Reactor Condenser Compressor NH ₃ Converter
Number of Capital Cost Units	7	4	7	7	7	4
Operating Cost Energy Cost Units Capital Cost Units	80 20	143 11	10 20	9 20	23 20	18 12
Production Cost	100	154	30	20	43	30
CO ₂ Sequestration Cost Units	20	0	18	17	8	4
Total Production Cost Units	120	154	48	46	51	34
Production Cost \$/ton NH3°	360	463	144	134	153	102
Credit for Coproduct Carbon at \$2 / MMBTU		<u>-60</u>			<u>-93</u>	<u>-65</u>
Net Production Cost \$ / ton NH ₃	360	403	144	138	60	37
*Based on natural gas cost =	= \$10 / MMBTU a	nd coal cost = $$1$	/ MMBTU			

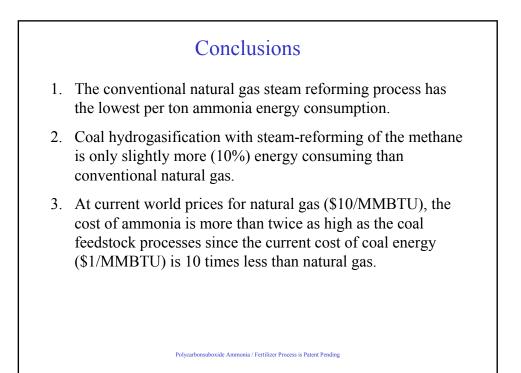
Utilization of CO₂

Two other fertilizer products, which can utilize CO_2 and reduce CO_2 from ammonia plants are urea and ammonium carbonate. These are exothermic reactions, which do not require energy input, which would generate additional CO_2

For ammonium carbonate

 $2 \text{ NH}_3 + \text{CO}_2 + \text{H}_2\text{O} = (\text{NH}_4)_2\text{CO}_3$

 CO_2 utilization = 44 / 2 x 17 = 1.3 tons CO_2 / ton NH_3


For urea

 $2 \text{ NH}_3 + \text{CO}_2 + \text{H}_2\text{O} = (\text{NH}_2)_2\text{CO} + 2 \text{H}_2\text{O}$

 CO_2 utilization = 44 / 2 x 17 = 1.3 tons CO_2 / ton NH_3

From summary table 7 shown below, it is noted that the conventional natural gas reforming process can utilize almost all (90%) of the CO_2 emitted in the conversion to urea or ammonium carbonate. The gasification process can utilize only 37% of the CO_2 emitted, while the hydrogasification and gas-cracking process can also utilize almost all (86%) of the CO_2 generated.

Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending

Conclusions (con't)

- 4. Production co-product carbon with high price natural gas feedstock would require a high value market for the carbon in order to substantially reduce the current cost of ammonia. The CO_2 emission, however, is eliminated.
- 5. The possible co-production of polycarbonsuboxide as a soil conditioner and fertilizer appears economically attractive, with substantially reduced CO_2 emission.
- 6. It is recommended that further studies be performed using coal as a feedstock with hydrogasification and with co-production of polycarbonsuboxides.

Polycarbonsuboxide Ammonia / Fertilizer Process is Patent Pending