Energy Efficiency Gains in Indian Ammonia Plants Retrospect and Prospects

Dr. S. NAND & MANISH GOSWAMI

The Fertiliser Association of India, 10, Shaheed Jit Singh Marg, New Delhi-110067, India tech@faidelhi.org

Outline of Presentation Ammonia Industry in India – A Profile 2. **Energy Consumption Trends** Relevance of Feedstock, Technology, Vintage 3. and Size of Plants for Energy Efficiency 4. Benchmarking Energy Efficiency 5. Energy Conservation Measures – A Retrospect **Recent Efforts in Energy Conservation** 6. Case Studies of an Old and a Relatively New 7. Plant **Prospects for Further Improvement in Energy** Efficiency

Ammonia Industry in India

- First large ammonia plant in 1951 (270 MTPD) using coke oven gas as feedstock
- Second ammonia plant in 1961 (300 MTPD) using hydrogen from electrolysis
- A number of 450-900 MTPD plants in 1960's and 70's using naphtha and heavy oils as feedstock
- 7 large plants in 1980's using natural gas feedstock
- Another 7 large plants in 1990's based on natural gas and naphtha feedstock

Table 1: Profile of Indian Ammonia Plants (2004-05)

Vintage	No. of			_	
	Plants	Feedstock	No. of Plants		
1960's	3	Gas	21	Size of Plants	No. of
1970's	11	Naphtha	13	(MTPD)	Plants
1980's	12	Fuel Oil	4		
1990's	12			< 600	8
		Total	38	600 to < 900	3
Total	38			900 to <1500	11
				≥1500	16
				Total	38
Cir no Li					4

Accounting of Energy Consumption

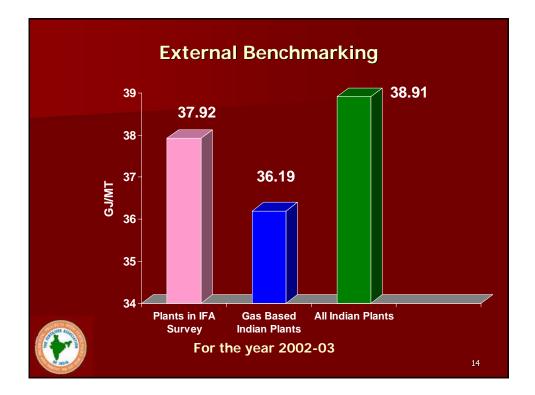
- Electricity at conversion factor of 1 KWH = 2520 kCal (10.543 MJ)
- Steam import/export at enthalpy value
- Inclusion of energy consumption in support facilities e.g. water and effluent treatment, cooling towers, etc.
- Consumption figures are the weighted average for the year.

Energy Consumption Trends Figure 1: Feedstock Wise Energy Consuption of All Ammonia Plants 58.24 53.51 60 50.25 50 38.91 35.52 37.91 40 **GJ/MT** 30 20 10 0 Gas **Naphtha Fuel Oil Overall** Feedstock 1987-88 2004-05 omment: Improvement by combination of new capacity and modernisation of old plants 6

(continued) Table 2: Feedstockwise Energy Consumption of Old Ammonia Plants Operational in 2004-05					
	Average Energy (GJ/MT)			y (GJ/MT)	
SL. No.	Feedstock (plants)	1987-88	2004-05	% Improvemen	
I	Gas (5)	41.59	37.99	8.7	
II	Naphtha (8)	51.04	42.13	17.5	
III	Fuel Oil (4)	56.57	50.25	11.2	
	Overall (17)	47.99	42.17	12.1	

Feedstock	No. of Plants	Capacity ('000 MT)	Energy Consumption (GJ/MT)
Gas	21	8344.4 (62.2%)	35.52
Naphtha	13	3680.4 (27.5%)	38.91
Fuel Oil	4	1386.0 (10.3%)	50.25
Total	38	13410.8	37.91


Table 3: Capacity and Energy Consumptionbased on Type of Compressors (2004-05)


Type of Compressor	No. of Plants	Capacity ('000 MT)	Average Energy (GJ/MT)
Reciprocating	6	844.1 (6.3%)	39.37
Centrifugal	32	12566.7 (93.7%)	37.87
Total	38	13410.8	37.91
r ant			10

Year	No. of plants	Capacity ('000 MT)	Energy Consumption (GJ/MT)
1960's	3	475.1 (3.5%)	40.00
1970's	11	2950.3 (22.0%)	45.35
1980's	12	4919.2 (36.7%)	38.62
1990's	12	5066.2 (37.8%)	33.51
Total	38	13410.8	37.91

Table 5: Plant size wise Capacity and Energy
Consumption (2004-05)

Size	No. of plants	Capacity ('000 MT)	Energy Consumption (GJ/MT)
< 900	11	1858.7 (13.9%)	45.73
<u>></u> 900	27	11552.1 (86.1%)	37.32
Total	38	13410.8	37.91

External Benchmarking (continued..)

 Table 7: Feedstock-wise Energy Data of Indian and Chinese

 Ammonia Plants (1999-2000)

	Indi	an Plants	Chinese Plants		
Feedstock	No. of Plants	Average Energy (GJ/MT)	No. of Plants	Average Energy (GJ/MT)	
Gas	15	35.06	8	36.69	
Naphtha	3	38.83	5	38.70	

Source: Wang Wenshan, "The Status Quo of China's Synthetic Ammonia and Urea Production Based on Natural Gas and Oil" – IFA Production and Industrial Trade Committee Meeting, 17-19 October, 2000. FAI Data for Indian Plants

Gas Making

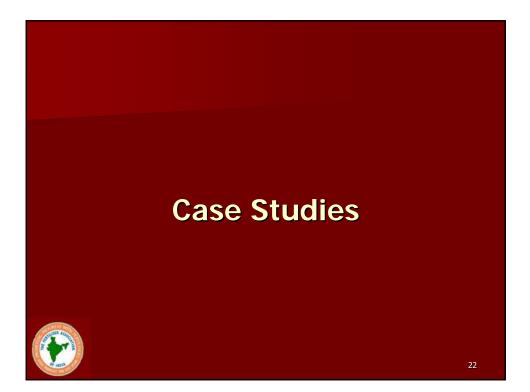
- Thermal efficiency of primary reformers
 - Improvement in recovery of heat from furnace exhaust gases
 - Better insulation
 - Excess air control
- Efficiency in reforming
 - Lower steam carbon ratio
 - Superior tube metallurgy
- GT drive for air compressors

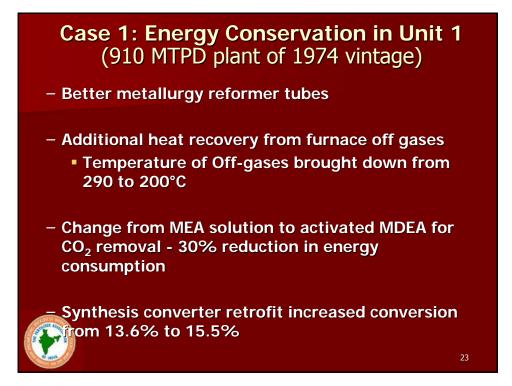
Synthesis Section

- Change of gas flow in synthesis converters from axial to radial or radial-axial
- Hydrogen recovery from purge gas
- Cooling of syn-gas at the inlet of the compressor
- Molecular sieve drying of synthesis gas

Recent Efforts in Energy Conservation

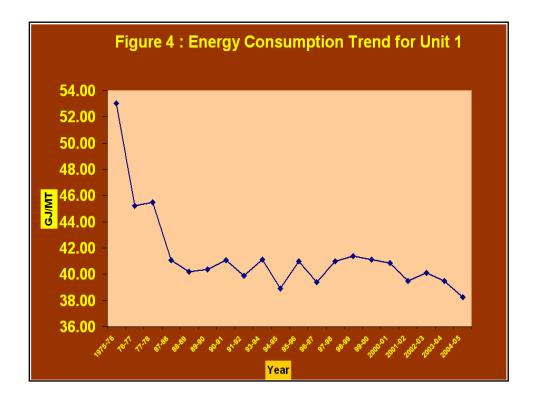
- Installation of Pre-reformer
 - Flexibility in feedstock
 - Lower steam-carbon ratio
 - Reforming at lower temperature

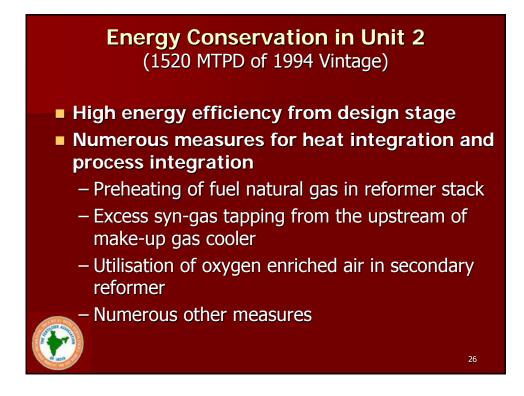

20

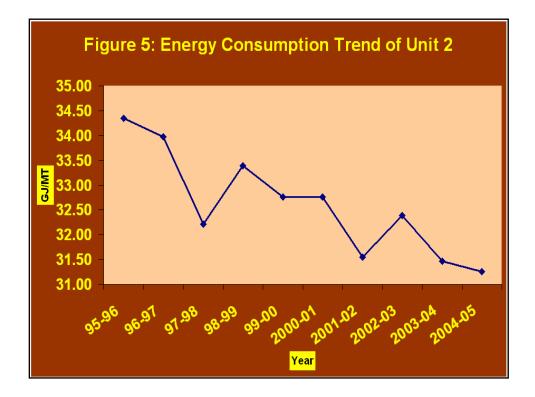

Recent Efforts in Energy Conservation

(continued..)

- Installation of S-50 Converter
- Liquid ammonia wash of synthesis gas
- Two stage regenerator in CO₂ removal system

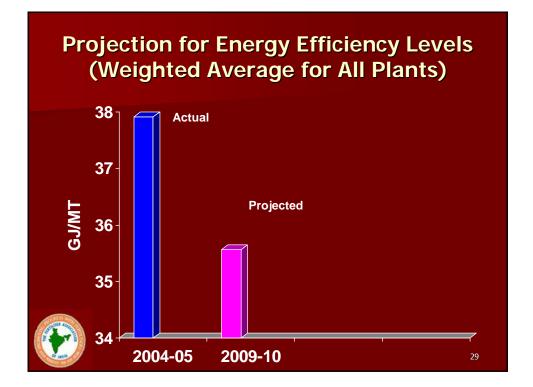

Case 1: Energy Conservation in Unit 1 (910 MTPD plant of 1974 vintage)


- Installation of hydrogen recovery unit energy saving of 0.96 GJ/MT
- Installation of a pre-reformer
- Improvements in compressors' efficiency
- Increase in capacity from 910 MTPD to 1100 MTPD



 A large number of other measures to improve reliability and efficiency

24



Prospects for Further Improvement in Energy Efficiency

- 1. Feedstock change
- 2. Debottlenecking of capacity
- 3. Revamp and retrofits
- 4. Optimisation of operating parameters

28

