A Presentation On

Gaseous Emissions in the Fertilizer Industry and Their Impact on Specific Energy Consumption Per Tonne Of Product

> By Dr. S. Chandra Department of Fertilizers Ministry of Chemicals & Fertilizers A-Wing, Shastri Bhawan New Delhi - 110 001 INDIA

Specific Energy Consumption & Gaseous Emission trend in Ammonia and Urea Plants

Specific Energy Consumption:

- In 1960s, specific energy consumption in Ammonia Plants was around 20 GCal per tonne of Ammonia.
- •1990s Generation Plants consumed about 30% Less Energy as compared to 1960s Generation Plants.
- •Energy consumption per tonne of Ammonia in new Plants based on natural gas is about 7.0 Gcal.
- •Three decades ago, the specific energy consumption per tonne of Urea was about 12 Gcal.
- •The up-gradation/modernization and implementation of certain energy saving schemes together with efficient operations of plants have reduced the specific energy consumption to about 6.0 GCal per tonne of Urea in old Plants.

 De-bottlenecking Sche Implementation of er Enhancement of insta Depending on the reduction to the order of De-bottlenecking sc 	arries in existing indian Pertilizer Plants include. ergy saving measures alled capacity by more than 10% scheme, overall specific energy consumption of about 15% can be achieved by implementation chemes.
Retrofits cor energy effici	nsidered for the improvement of the iency of an existing Ammonia Plant
Retrofit	Potential Energy Savings per tonne of Ammonia
	Gcal
Feed Gas Saturator	0.24
Convection Coils	0.22
Boiler Feed Water Economizer	0.10
Low heat removal of Carbon dioxide	0.26
Ammonia Converter	0.25 to 0.40

- The feedstock used for manufacturing Ammonia/Urea plays an important role in respect of specific energy consumption per tonne of product together with gaseous emissions.
- From the energy saving and less gaseous emission point of view, the best feed stock is natural gas.

The comparative energy figures with respect to various feed-stocks are shown in the following table:

Co	nsumption of feedstock and Ei for Ammonia Production	nergy
Feedstock and Fuel	Requirements per ton of Ammonia	Energy (Gcal)
Natural Gas	873 Nm ³	7.0
Naphtha	0.72 t	7.6
Fuel Oil	0.87 t	8.5
Coal	1.54 t	9.8

Year	Ammonia - Gcal/MT	Urea - Gcal/MT
1987-88	12.48	8.87
1990-91	11.62	8.42
1991-92	11.54	8.50
1992-93	11.38	8.24
1993-94	11.48	8.29
1994-95	10.99	7.90
1995-96	10.97	7.84
1996-97	10.88	7.78
1997-98	10.28	7.36
1988-99	10.18	7.22
1999-00	9.80	6.96
2000-01	9.59	6.88
2001-02	9.36	6.67

Saving in Energy Consumption

Better feedstock, modern process technologies & instrumentation, together with improved operation and maintenance practices have resulted in significant saving in energy consumption. Modernization of plants of 60's and 70's vintage has plants helped the to reduce the energy consumption.

New plants are being designed energy – specific and environmental friendly for consumption of about 6.9 to 7.0 Gcal per tonne of Ammonia and 5.0 Gcal per tonne of Urea together with bare minimum gaseous emissions as pollutants.

Specific Energy Consumption & Gaseous Emission trend in Ammonia and Urea Plants

Gaseous Emissions

- Analysis of corresponding years actual gaseous emissions data of Indian Ammonia/Urea plants reveals that there is significant reduction in the emissions.
- This reduction has taken place due to:
 - Installation of various Pollution abatement facilities
 - Purge Gas recovery
 - De-Bottlenecking
 - Installation of CO₂ recovery Plants
 - Change of Feedstock
 - Adoption of environmental friendly Technologies
- Consequently, standard norms of gaseous emission have been brought down e.g. Urea dust emission to 50 mg/Nm³ from 150/Nm³.
- Specific analysis of actual Urea dust emission from Prilling towers of Indian Fertilizer Plants over a period of 12 years (1992-93 to 2004-05) reveals that the average reduction in Urea dust emission revolves around 30%.

Specific Energy Consumption & Gaseous Emission trend in Ammonia and Urea Plants

Vintage, Technology and Plant Configuration

- The Old Vintage Plants have:
 - Lower Installed Capacity
 - Higher Specific Consumption
 - Higher Gaseous Emissions
- First Generation Ammonia Plants of 200-450 MTPD Capacity were commissioned in 1960s using Reciprocating Compressors.
- Advent of Centrifugal compressors witnessed the installation of Ammonia plants with capacity of 600 MTPD or higher, which brought down the energy consumption of Ammonia production significantly.
- Next generation Ammonia plants were scaled upto 900-1000 MTPD and Latest generation plants are of 1350 MTPD/1520 MTPD and higher capacity upto 1800 – 2000 MTPD Ammonia, which gave even better energy consumption.
- The latest generation Plant will have specific energy consumption of about 5.0 Gcal per tonne of Urea.

Pollution Norms and Level of Emissions

- Problem of Environmental Management a great concern Worldwide.
- India is a third largest chemical fertilizer industry after USA and China.
- India is more or less self sufficient in respect of Urea Fertilizer production.
- Fertilizer industry in India ranks 7th out of 17 highly polluting industrial sectors.
- Gaseous Emissions in nitrogenous fertilizer Plants are Urea Dust, SPM, SOx, NOx, CO, CO₂, H₂S and NH₃.
- The Central Pollution Control Board (CPCB) and State Pollution Control Boards (SPCB) under Ministry of Environment and Forest fix the norms for the pollutants in respect of gaseous emissions, liquid effluent, etc. for fertilizer industry. E.g. UPSCB norms for stack emission standards are:
- SOx : 100ppm , NOx : 100ppm , SPM : 40 mg/m³ , NH₃ : 50ppm
- Analysis of gaseous emissions in fertilizer industry reveals that the actual emissions are lower than the prescribed levels.
- Ministry of Environment and Forests, Govt. of India gives directives to prepare comprehensive management plan together with Environmental Impact Assessment (EIA) to identify and evaluate pollution impact of the project on environmental system.

Inter-Relationship between Pollutants' Emissions					
Analysis of Pollutants Emi plants reveals a direct re energy consumption per to (Plant – A –	A Specific Energy elationship between que onne of product. ollowing Tables represe Worst Energy Efficient,	rgy Consumption carried of antum of emissions of nt two Gas based Plants Plant – B – Most Energy	n but in 32 Indian fertilizer pollutants and specific Efficient)		
Plant – A – (Wors Energy Consum	Plant – A – (Worst Energy Efficient), Pre-1992 – Gas based Urea Plant Energy Consumption vis-à-vis Emission – Prilling Tower- (Table-1)				
YEAR	ENERGY Mkcal/MT	SPM mg/Nm ³	NH ₃ mg/Nm ³		
1997-1998	14.825	33.4	42.3		
1998-1999	19.551	39.8	45.4		
1999-2000	17.848	36.5	44.5		
2000-2001	16.140	35.7	43.5		
2001-2002	22.753	41.2	46.5		
2002-2003	16.294	35.4	42.3		
2003-2004	12.780	32.1	41.2		
2004-2005	14.547	35.2	44.1		
2005-2006 (upto 16.03.2006)	13.639	33.2	43.4		

Plant – B – (Most Energy Efficient), Post-1992 – Gas based Urea Plant Energy Consumption vis-à-vis Emission – Prilling Tower-(Table-2)			
YEAR	ENERGY	SPM	NH3
	Mkcal/MT	mg/Nm3	mg/Nm3
1997-1998	5.535	28.0	26.6
1998-1999	5.743	26.9	25.2
1999-2000	5.528	26.3	25.0
2000-2001	5.531	30.1	26.4
2001-2002	5.373	29.0	23.2
2002-2003	5.439	29.8	22.9
2003-2004	5.306 🗠	31.5	27.6
2004-2005	5.227	31.6	23.6
2005-2006	5.129	27.4	20.3

YEAR	ENERGY Mkcal/MT	SPM mg/Nm ³
1997-1998	14.825	33.4
1998-1999	19.551	39.8
1999-2000	17.848	36.5
2000-2001	16.140	35.7
2001-2002	22.753	41.2
2002-2003	16.294	35.4
2003-2004	12.780	32.1
2004-2005	14.547	35.2
2005-2006 (upto 16.03.2006)	13.639	33.2

Plant – B – (Most Energy Efficient), Post-1992 – Gas based Urea Plant Energy Consumption vis-à-vis Emission – Prilling Tower-(Table-4)			
YEAR	ENERGY	SPM	
	Mkcal/MT	mg/Nm3	
1997-1998	5.535	28.0	
1998-1999	5.743	26.9	
1999-2000	5.528	26.3	
2000-2001	5.531	30.1	
2001-2002	5.373	29.0	
2002-2003	5.439	29.8	
2003-2004	5.306	31.5	
2004-2005	5.227	31.6	
2005-2006	5.129	27.4	

Mkcal/MT 1997-1998 14.825 1998-1999 19.551 1999-2000 17.848 2000-2001 16.140 2001-2002 22.753 2002-2003 16.294	mg/Nm ³ 42.3 45.4 44.5
1997-199814.8251998-199919.5511999-200017.8482000-200116.1402001-200222.7532002-200316.294	42.3 45.4 44.5
1998-199919.5511999-200017.8482000-200116.1402001-200222.7532002-200316.294	45.4 44.5
1999-200017.8482000-200116.1402001-200222.7532002-200316.294	44.5
2000-2001 16.140 2001-2002 22.753 2002-2003 16.294	
2001-2002 22.753 2002-2003 16.294	43.5
2002-2003 16.294	46.5
	42.3
2003-2004 12.780	41.2
2004-2005 14.547	44.1

Plant – B – (Most Energy Efficient), Post-1992 – Gas based Urea Plar			
YEAR	ENERGY	NH3	
	Mkcal/MT	mg/Nm3	
1997-1998	5.535	26.6	
1998-1999	5.743	25.2	
1999-2000	5.528	25.0	
2000-2001	5.531	26.4	
2001-2002	5.373	23.2	
2002-2003	5.439	22.9	
2003-2004	5.306	27.6	
2004-2005	5.227	23.6	
2005-2006	5.129	20.3	

Analysis > During analysis, it was also observed in some of the cases that specific energy consumption is not directly proportional to gaseous emission wherever there were significant low percentage capacity utilization and frequent breakdowns in the plants as well as due to higher percent capacity utilization (above 100%) leading to less contact time and higher velocity of Prills in Prilling Tower. > Analysis reveals that energy-efficient fertilizer plants are having lower level of emissions of pollutants . > The latest fertilizer technologies are environmental-friendly having lower gaseous emissions and lower specific energy consumption per tonne of product. Gaseous emissions as pollutants cannot be eliminated totally in any chemical and fertilizer plant. However, it can be brought down to the bare minimum level by employing the latest and improved pollution abatement and energy saving schemes together with implementation of latest Research & Development in the field of Pollution abatement keeping in view the cost benefit analysis.

Impact on Health of Human beings, Animals and Plants			
Pollutants	Effect on Health		
SOx	Increases human mucus flow, throat and eye irritation, causes bleaching of leaves and necrosis in leaves.		
NOx	Eye and nasal irritation, cellular effects, changes in lung morphology, causes damages to the plants, decreases photosynthesis. Adverse effect on human being, particularly children and their mental retardation.		
со	Headache, dizziness, nausea, reduces oxygen carrying capacity of blood and forms carboxy haemoglobin, respiratory failure and death.		
Ammonia	Irritation in eye and throat.		
Fluorine/ Fluoride	Causes mottled teeth and bone damage at higher dose, Damages the plants.		
Acid mist	Damages the plants, adverse effect on aquatic animals		
Urea Dust, SPM	Adverse effect on human being, adverse effect on flowers of plants.		

Plants having effective/efficient environmental and energy management system, achieve significantly lower level of gaseous emissions and specific energy consumption. Emissions of pollutants in fertilizer plants should be aimed to be controlled at source by implementing various pollution abatement schemes. Energy can be saved in any fertilizer plant by minimizing the gaseous emission levels by taking appropriate cost-effective measures. Apart from the Energy loss due to higher level of gaseous emissions, there is an adverse impact on the health of human beings, animals and plants etc. in and surrounding the fertilizer plants.

