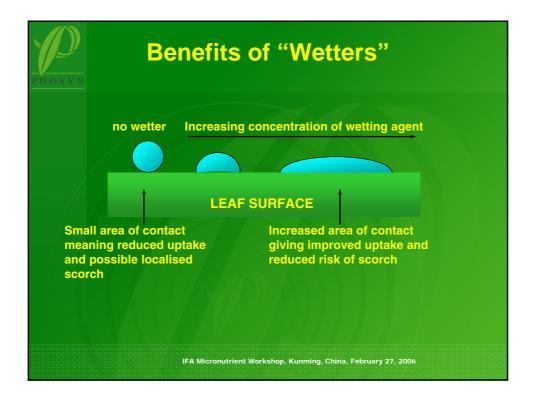
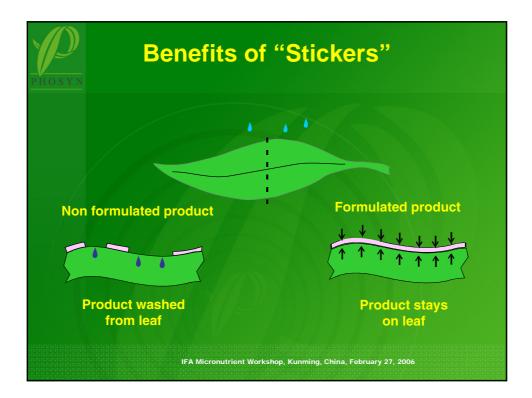
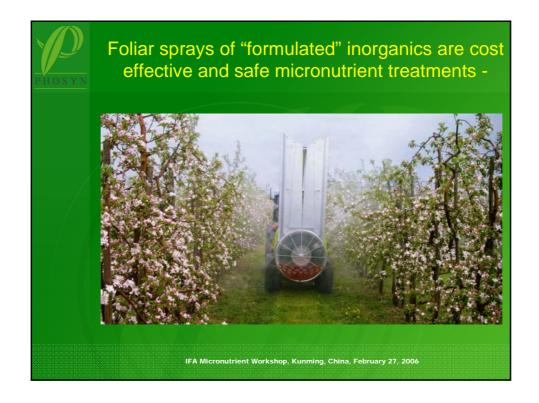


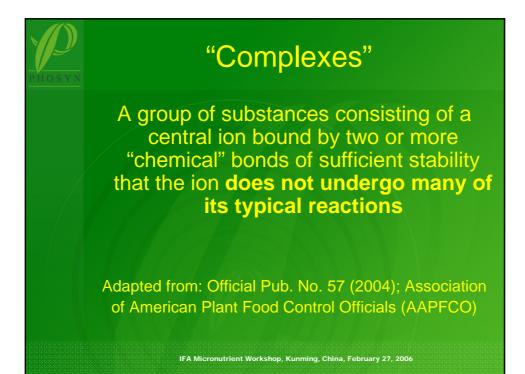
PHOSYN	Essential Fertiliser Nutrients for Crops					
	PRIMARY NUTRIENTS	SECONDARY NUTRIENTS	MICRONUTRIENTS (Trace Elements)			
	Nitrogen (N) Phosphorus (P) Potassium (K)	Calcium (Ca) Magnesium (Mg) Sulphur (S)	Boron (B) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) Zinc (Zn) *			
	* Chlorine (CI) and Nickel (Ni) have also been proposed Cobalt (Co) is required by root nodule bacteria in legumes (pulse crops) Selenium (Se) and lodine (I) are also required by humans and animals					
	IFA Micronutrient Workshop, Kunming, China, February 27, 2006					

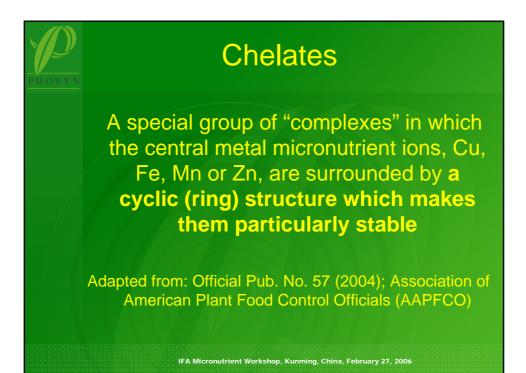

Inorganic Sources of Micronutrients - "Straights"			
Material	Element	Water Solubility (g/100g H ₂ O)	
Sources of boron			
Granular borax	11.3	2.5	
Sodium tetraborate, anhydrous	21.5	1.3	
Solubor®	20.5	22	
Sources of copper			
Copper sulfate	25.0	24	
Cuprous oxide	88.8	sparingly soluble	
Cupric oxide	79.8	sparingly soluble	

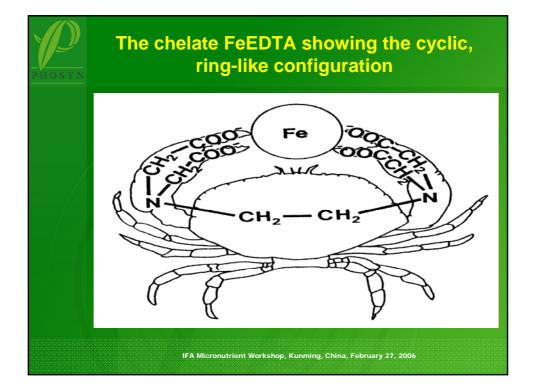

	Inorganic Sources of Micronutrients - "Straights"			
	Material	Element	Water Solubility (g/100g H ₂ O)	
	Sources of iron			
	Ferrous sulfate	20.1	33	
	Ferric sulfate	19.9	440	
	Sources of manganese			
	Manganous sulphate	24.6	105	
	Manganous carbonate	47.8	Sparingly soluble	
	Manganous chloride	43.7	63	

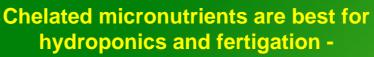

Inorganic Sources of Micronutrients - "Straights"			
Material	Element	Water Solubility (g/100g H ₂ O)	
Sources of molybdenum			
Sodium molybdate	39.7	56	
Ammonium molybdate	54.3	44	
Sources of zinc			
Zinc sulfate	36.4	89	
Zinc oxide	80.3	sparingly soluble	
Zinc oxysulfate (oxide + sulphate)	53.8	variable	
Zinc nitrate	22.0	324	


<image><image><image><image><image><image><image><image><image><image><image><image><image>









Micronutrient Content of Typical Chelates					
Chelating Agent	Initial	%	Micro	nutrie	ent
		Cu	Fe	Mn	Zn
EthyleneDiamineTetra – Acetic acid	EDTA	7-13	5-14	5-12	6-14
EthyleneDiamineDiHydroxyphenyl – Acetic acid	EDDHA			- r liquids r powde	
DiethyleneTriaminePenta – Acetic acid	DTPA	-	10	-	-

- and soil applied EDDHA remains the best way to control Fe deficiency

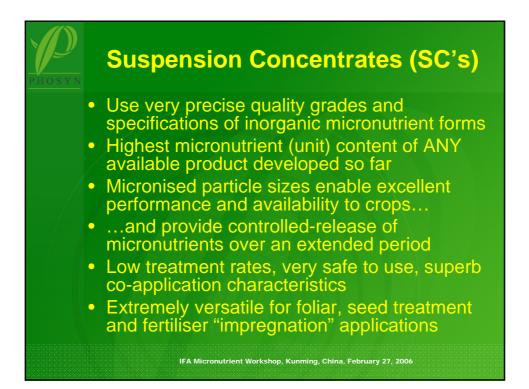
IFA Micronutrient Workshop, Kunming, China, February 27, 2006

Analysis of Different Types of Liquid Micronutrient "Complexes"					
MICRONUTRIENT	"COMPLEX" TYPE	TYPICAL ANALYSIS			
BORON (B)	Boron - alkanolamine	150 gm/litre			
MOLYBDENUM (Mo)	Inorgano - molybdate	250 gm/litre			
COPPER (Cu)	Cu – EDTA chelate	93 gm/litre			
IRON (Fe)	Fe – EDDHA chelate	50 gm/litre			
IFA Micron	utrient Workshop, Kunming, China, Fe	bruary 27, 2006			

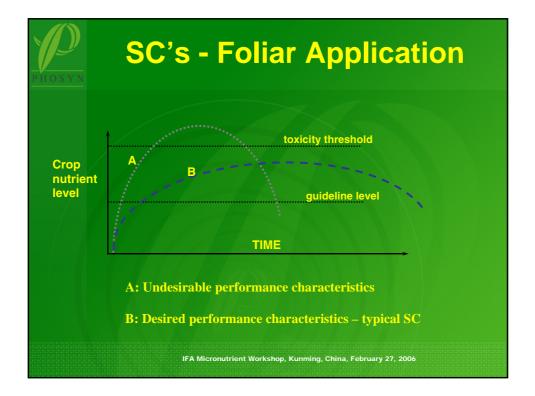
Features to be Considered in Selecting a Micronutrient Treatment

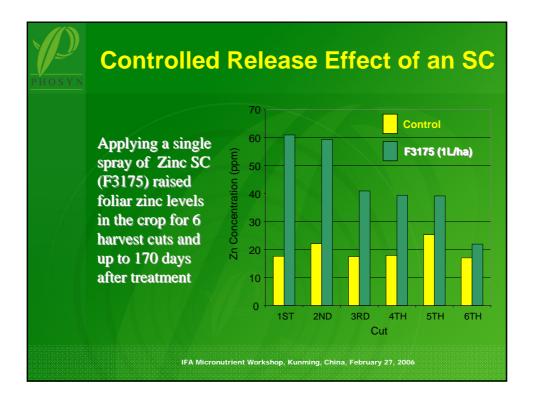
- Amount (units) of micronutrient present
- Cost per micronutrient unit value for money
- Rate of application per unit area per season
- Ease, convenience and practicality of handling and use for trouble-free integration


IFA Micronutrient Workshop, Kunming, China, February 27, 2006


Co-application characteristics

 However in recent years an innovatively designed micronutrient product type has been developed that does possess ALL


IFA Micronutrient Workshop, Kunming, China, February 27, 2006



Typical Micronutrient Content and Density Ranges of SC's				
Micronutrient	Micronutrient Content (gm/litre)	Density (kg/litre)		
Copper (Cu)	250 – 500	1.3 – 1.7		
Manganese (Mn)	400 – 500	1.7 – 1.8		
Zinc (Zn)	600 – 700	1.7 – 2.0		
IFA Micronutrie	nt Workshop, Kunming, China, Februar	y 27, 2006		

