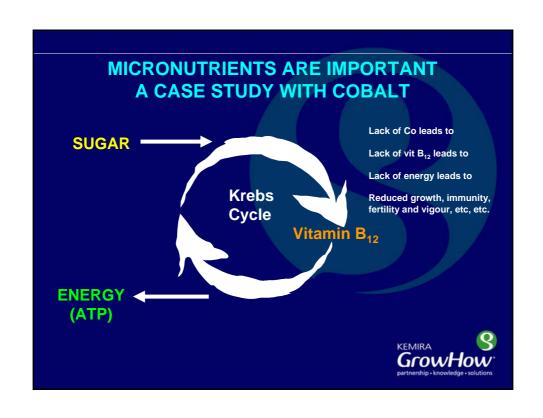
MICRONUTRIENTS AND ANIMAL NUTRITION AND THE LINK BETWEEN THE APPLICATION OF MICRONUTRIENTS TO CROPS AND ANIMAL HEALTH

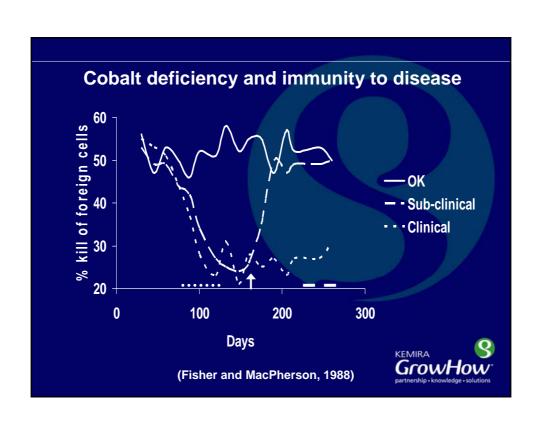
Dr George Fisher
Offerings Director (Cattle)
Kemira GrowHow oyj

SCHEME

- The need for micronutrients (what do they do in animals?)
- Micronutrients of interest
- Importance of micronutrients (case study with cobalt)
- Animal requirements
- The link between application and animal health
- Future work
- Conclusions

THE NEED – WHAT DO MICRONUTRIENTS DO?


- Enzymes and co-enzymes THEY ARE INVOLVED IN EVERYTHING!
- Metabolic disorders in livestock affecting fertility, growth and welfare
- Deficiency Clinical and sub-clinical forms
- Toxicity in certain cases



MICRONUTRIENTS OF INTEREST

- Copper (Cu)
- Selenium (Se)
- Cobalt (Co)
- lodine (l)
- Zinc (Zn)
- Manganese (Mn)
- Boron (B)

Cobalt deficiency and lamb vigour

Time from birth to (average in minutes):	Clinical	Sub- clinical	ОК
Standing	22	29	15
Finding udder	41	44	24
Suckling	76	61	31

(Fisher and MacPherson, 1988)

Cobalt deficiency and immunity to disease

Lamb blood immunoglobulins (as % of OK)	Clinical	Sub- clinical	OK
2 weeks after	69	61	100
lambing			
4 weeks after	62	52	100
lambing			

(Fisher and MacPherson, 1988)

Cobalt deficiency and lamb survival

	Clinical	Sub- clinical	OK
% neonatal mortality	47	6	5
% treated for ill- health and survived	5	24	0

(Fisher and MacPherson, 1988)

ANIMAL REQUIREMENTS

e.g. copper:

Cattle Maintenance 0.7 mg Cu per 100 kg live weight

Growth 1.1 mg Cu per 1 kg live weight gain

Milk 0.1 mg Cu per litre

Sheep Maintenance 0.04 mg Cu per 10 kg live weight

Growth 0.11 mg Cu per 0.1 kg live weight gain

Milk 0.4 mg Cu per litre in early lactation

0.2 mg Cu per litre in late lactation

APPLICATION AND ANIMAL RESPONSE

Options for diagnosis:

- Soil
- Herbage
- Animals

Soil and herbage levels of micronutrients are poor indicators of deficiency

Animal tissue (usually blood) provides more accurate diagnosis, but account for the 'liver-effect'

EMIRA
GrowHow

DON'T sample happy cows! (mid lactation, early pregnancy)

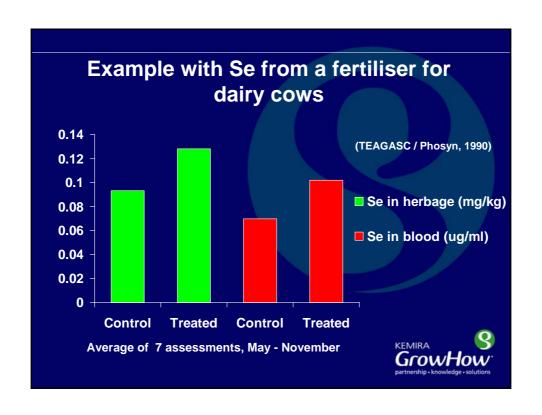
DO sample stressed cows! (last third pregnancy, early lactation)

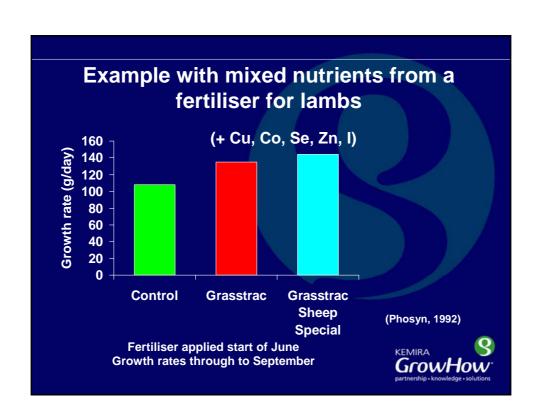
- Sample 10% of stock
- Get a full metabolic Profile
- Re-sample after treatment

OPTIONS FOR SUPPLEMENTATION

Treat the soil

- Fertilisers


Treat the herbage


- Sprays

Treat the animal

- Metered water
- Feeding blocks and licks
- Feed supplements
- Injecting
- Dosing (with boluses)
- Drenching

Micronutrien	nt content of di	fferent species
_		
Species	Fe (mg/kg DM)	Cu (mg/kg DM)
Achillea millefolium	123 - 284	10.5 – 18.4
Daucus carota	164 - 298	7.3 – 17.6
Sanguisorba officinalis	278 - 356	7.6 – 25.0
(Lyduch and Trzask	os, 1992)	KEMIRA GrowHow partnership • knowledge • solutions

FURTHER WORK

- Micronutrients in manures
- Concentrations in different forage plant species
- Selection by animals
- Gaps in the knowledge of farmers

CONCLUSIONS

- Micronutrients are important
- Ask the animal
- Treat all deficiencies in a manner that fits the system best
- Benefits in fertility, production, welfare

