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Reactive nitrogen and the need to increase fertilizer nitrogen use efficiency 

Nitrogenous fertilizers have contributed much to the remarkable increase in food production that has 
occurred during the past 50 years (Smil, 2001). Globally, however, N fertilizers also account for 33% of 
the total annual creation of Nr or 63% of all anthropogenic sources of reactive nitrogen (Nr) (Table 1). 
Reactive nitrogen is defined as all biologically, photochemically, and/or radiatively active forms of N --   
a diverse pool of nitrogenous compounds that includes organic compounds (e.g. urea, amines, proteins, 
amides), mineral N forms, such as NO3

- and NH4
+ as well as gases that are chemically active in the 

troposphere (NOx, NH3, N2O) and contribute to air pollution and the greenhouse effect (Galloway et al., 
1995). Asia alone accounts for more than 50% of the global N fertilizer consumption as well as 37% for 
the global Nr creation. Smil (1999) estimated that only about half of all anthropogenic N inputs to 
cropland are taken up by harvested crops and their residues, with the remainder contributing significantly 
to Nr enrichment of the atmosphere, ground and surface waters.  
 

Table 1: Global creation of reactive N from anthropogenic and natural sources in the mid 1990s (Boyer et al., 2004). 

 Anthropogenic (million t/yr) Natural (million t/yr) 
Total

Region Fertilizer BNF Import Depos. Total BNF Lightng. Total 

Africa 2.1 1.8 0.5 2.9 7.3  25.9 1.4 27.3 34.6
Asia 44.2 13.7 2.3 3.8 64.0  21.4 1.2 22.6 86.6

Europe + FSU 12.9 3.9 1.0 2.9 20.7  14.8 0.1 14.9 35.6
Latin America 5.1 5.0 -0.9 1.8 11.0  26.5 1.4 27.9 38.9

N. America 12.6 6.0 -2.9 2.7 18.4  11.9 0.2 12.1 30.5
Oceania 0.7 1.1 -0.3 0.3 1.8  6.5 0.2 6.7 8.5

Total 77.6 31.5 -0.3 14.4 123.2 107.0 4.5 111.5 234.7

 

It is widely believed that accumulation of excessive amounts of Nr in terrestrial and aquatic ecosystems as 
well as in the troposphere leads to significant costs to society that occur through direct and indirect 
negative effects on environmental quality, ecosystem services, biodiversity, and human health (Pretty et 
al., 2000; Schweigert and van der Ploeg, 2000; Townsend et al., 2003). Such estimates are not very 
precise, however, and it is not clear whether they place an appropriate value on the large positive impact 
of N fertilizer on ensuring food security and adequate human nutrition.  
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Environmental benefits also accrue from fertilizer use by avoiding expansion of agriculture into natural 
ecosystems and marginal areas that cannot sustain crop production and provide critical habitat for 
protecting biodiversity (Cassman et al., 2003). Regardless of what the true societal costs of accumulation 
of Nr in cultivated and natural ecosystems are, it is clear that Nr creation associated with human activities 
must slow down. Mitigation options include:  

(i) Reduction of Nr emissions from fossil fuel combustion,  
(ii) Transformation of Nr to non-reactive N forms (e.g., denitrification to N2 or sequestration of N in 

soil organic matter),  
(iii) Changes in human diet and associated changes in food, feed, and fertilizer demand, and 
(iv) Improvements in fertilizer nitrogen use efficiency (NUE) in agricultural systems: less N fertilizer 

per unit food produced. 

Many of these mitigation strategies are of long-term nature and they are closely linked to policy decisions 
that need to be made. However, improving NUE in agriculture has been a concern for decades and 
numerous new technologies have been developed in recent years to achieve this. Therefore, fertilizers and 
their management will be at forefront of measures to improve the global N balance over both the short- 
and long-term. 

This paper addresses three issues: (i) definition and measurement of NUE, (ii) global status of NUE in 
agriculture, and (iii) a brief outline of major technology options for increasing NUE. I primarily focus on 
cereals because they account for nearly 60%% of global N fertilizer use (IFA, 2002) and represent 20% of 
the global annual creation of Nr. 
 
Definition and measurement of nitrogen use efficiency 

Nitrogen budgets 

Nitrogen budgeting approaches are often used to evaluate system-level N use efficiency and to understand 
N cycling by estimates of input, storage and export processes by mass balance. A surplus or deficit is a 
measure of the net depletion (output > input) or enrichment (output < input) of the system, or simply of 
the ‘unaccounted for’ N. This approach is used in research studies that aim at the identification of the fate 
of N surpluses or in long-term assessment of N flows and their respective impact and soil and the 
environment in managed or natural ecosystems. Unlike many of the agronomic indices of NUE described 
below, N budgeting approaches are also suitable for systems that are not at a relative equilibrium in terms 
of N, i.e., systems in which either significant accumulation or losses of N from indigenous sources occur. 

Nitrogen budgets can be constructed for a different time periods at any scale, ranging from an agricultural 
management unit to regional and continental scales. The degree of detail depends on the purpose of 
budgeting and on the resources available to collect the information.  For example, partial budgets that do 
not include all inputs can be used to estimate the N balance, provided that the major fluxes in and out of 
the ecosystem are accounted for. Budgets constructed for the purpose of guiding agricultural management 
or government policy decisions often consist of simple mass balances.  

A more complete budget analysis quantifying the relative role of various N inputs and outputs and the 
distribution and turnover of N among internal compartments is necessary in order to gain mechanistic 
understanding of the ecosystem. This limits the use of such approaches in evaluating fertilizer 
management strategies, new fertilizer products, or other technologies. Nitrogen budgets may also be 
difficult to compare because of different purposes and approaches used for making N budgets. Therefore, 
methodologies used must be clearly described and N budgets should include statements about scales and 
uncertainties associated with the estimates.  
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Agronomic indices of nitrogen use efficiency 

Various indices are commonly used in agronomic research to assess the efficiency of applied N (Novoa 
and Loomis, 1981; Cassman et al., 2002), mainly for purposes that emphasize crop response to N (Table 
2). In field studies, these indices are either calculated based on differences in crop yield and total N uptake 
with aboveground biomass between fertilized plots and an unfertilized control (‘difference method’), or by 
using 15N-labeled fertilizers to estimate crop and soil recovery of applied N. Time scale is usually one 
cropping season. Spatial scale for measurement is mostly a field or plot. Because each of the indices in 
Table 2 has a different interpretation value, research on fertilizer-N efficiency should include 
measurements of several indices in order to assess causes of variation in NUE. 

The agronomic framework is most useful for understanding the factors governing N uptake and fertilizer 
efficiency, to compare short-term NUE in different environments, and to evaluate different N management 
strategies or technologies. The ‘difference method’ is simple and cost-efficient, which makes it 
particularly suitable for on-farm research. However, measurement of NUE requires careful 
experimentation and interpretation must consider potentially confounding factors. Agronomic efficiency 
(AEN) and recovery efficiency (REN) are not appropriate indices of NUE when comparing cropping 
practices such as crop establishment methods or different water management regimes when the crop yield 
in control treatments (Y0) differs significantly because of these management practices. In these instances, 
PFPN is a more appropriate index for making comparisons. Comparisons of REN and physiological 
efficiency (PEN) among genotypes should use agronomically fit varieties and avoid comparisons with 
‘inferior germplasm’ not adapted to the particular growth conditions. Caution is required when using AEN, 
REN or PEN for assessing trends in NUE in long-term experiments because depletion of indigenous soil N 
in permanent 0-N plots will lead to overestimation of the true NUE in fertilized plots. Results obtained 
with the ‘difference method’ may also be confounded by added-N interactions, i.e., differences in N 
mineralization rates from soil organic matter and crop residues between +N and 0-N plots. Since many of 
the indices in Table 2 are ratios of several measurements, sampling and/or measurement errors can cause 
significant errors.  

Agronomic NUE indices only provide accurate assessment of NUE for systems that are at a relatively 
steady-state with regard to soil organic N content and where differences in root systems between 
unfertilized and fertilized crops are relatively small. Nitrogen in roots as well as any net accumulation of 
N from fertilizer in soil organic matter and its effect on the indigenous soil N supply for subsequently 
grown crops cannot be easily accounted for. This may lead to an underestimation of the overall system 
level efficiency of applied N inputs. Therefore, N budgeting or 15N methods should be used to assess the 
fate of N in the entire soil-crop systems over longer time periods and across different spatial scales. 
Compared to the difference method, no 0-N plot is required for estimating REN using 15N, but costs tend to 
be higher and a generally higher level of sampling and measurement quality is required. This limits the 
use of this method in on-farm studies. In general, 15N methods tend to produce results that are similar to 
those obtained with the difference method, but the relationships between REN values obtained with both 
methods is often quite scattered (Krupnik et al., 2004). Overall, REN values obtained with 15N are often 
slightly lower than those estimated with the difference method because of confounding effects related to 
pool substitution, i.e., immobilization of 15N fertilizer in microbial biomass and initial release of 
microbial-derived 14N. Ladha et al. (2005) estimated an average worldwide REN for cereal research trials 
of 51% measured with the difference method as compared to 44% measured with the 15N method. 
However, their estimates were not based on paired comparisons at the same sites. 
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Table 2:  Agronomic indices of N use efficiency and their typical ranges in cereals. 

NUE index Calculation Interpretation Common values 

PFPN - Partial factor 
productivity of applied 
N (often simply called 
nitrogen use efficiency 
or NUE) 

 (kg harvest product per 
kg N applied) 

 see Fig. 1a insert 

PFPN  = YN/FN 
• Most important for farmers because it 

integrates the use efficiency of both 
indigenous and applied N resources: 
     PFPN = (Y0/FN) + AEN 

• Increasing indigenous soil N 
(Y0) and the efficiency of 
applied N (AEN) are equally 
important for improving PFPN  

• Limited potential for identifying 
specific constraints or promising 
management strategies . 

40–70 kg grain kg-1 
N  

>70 kg kg-1 at low 
rates of N or in very 
efficiently managed 
systems 

AEN = Agronomic 
efficiency of applied N 

 (kg yield increase per 
kg N applied) 

 see Fig. 1a 

AEN  = (YN – Y0)/FN  • AEN is the product of the 
efficiency of N recovery from 
applied N and the efficiency 
with which the plant uses each 
additional unit of N acquired: 

         AEN = REN x  PEN 
• AEN can be increased by N, 

crop, and soil management 
practices that affect REN, PEN, 
or both. 

10–30 kg grain kg-1 
N   

>30 kg kg-1 in well-
managed systems or 
at low levels of N use 
or low soil N supply 

REN = Crop recovery 
efficiency of applied N  

    (kg increase in N 
uptake per kg 
N applied) 

 see Fig. 1c 

REN  = (UN – U0)/FN • REN depends on the congruence 
between plant N demand and the 
quantity of N released from 
applied N.  

• REN is affected by the N 
application method (amount, 
timing, placement, N form) as 
well as by factors that determine 
the size of the crop N sink 
(genotype, climate, plant 
density, abiotic/biotic stresses).  

0.30–0.50 kg kg-1 

0.50–0.80 kg kg-1 in 
well-managed 
systems or at low 
levels of N use or low 
soil N supply 

PEN = Physiological 
efficiency of applied N 

 (kg yield increase per 
kg increase in N uptake 
from fertilizer) 

 see Fig. 1d 

PEN = (YN – Y0)/(UN – 
U0) 

• PEN represents the ability of a 
plant to transform N acquired 
from fertilizer into economic 
yield (grain). 

• PEN depends on genotypic 
characteristics (e.g., harvest 
index), environmental and 
management factors, particularly 
during reproductive growth.  

• Low PEN suggests sub-optimal 
growth (nutrient deficiencies, 
drought stress, heat stress, 
mineral toxicities, pests). 

30–60 kg kg-1 

>60 kg kg-1 in well-
managed systems or 
at low levels of N use 
or low soil N supply 

FN – amount of (fertilizer) N applied (kg ha-1) 
YN – crop yield with applied N (kg ha-1) 
Y0 – crop yield (kg ha-1) in a control treatment with no N 
UN – total plant N uptake in aboveground biomass at maturity (kg ha-1) in a plot that received N 
U0 –  the total N uptake in aboveground biomass at maturity (kg ha-1) in a plot that received  no N 
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For the same soil and cropping conditions, NUE generally decreases with increasing N rate (Fig. 1). Crop 
yield (Y) and plant N accumulation (U) typically increase with increasing N rate (F) and gradually 
approach a ceiling (Figures 1a and 1c). The level of this ceiling is determined by the site yield potential. 
At low levels of N supply, rates of increase in yield and N uptake are large because N is the primary factor 
limiting crop growth and final yield. As the N supply increases, incremental yield gains become smaller 
because yield determinants other than N become more limiting as the maximum yield potential is 
approached.  
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Figure 1: Response of irrigated maize to N application at Clay Center, Nebraska, 2002: (a) relationship between 
grain yield (Y) and N rate (F) and the incremental agronomic N efficiency (AE, kg grain yield increase per kg N 
applied); (b) relationship between gross return above fertilizer cost (GRF) and N rate and the incremental GRF 
(dGRF/dF); (c) relationship between plant N accumulation (U) and N rate and the incremental recovery efficiency of 
fertilizer N (RE, kg increase in N uptake per kg N applied), (d) relationship between grain yield and plant N 
accumulation (U) and the incremental physiological efficiency of fertilizer N (PE, kg increase in grain yield per kg N 
taken up). Dashed lines indicate where maximum profit occurred. Measured values of AE (a), RE (c) and PE (d) 
calculated by the difference method are shown for the four N rates used. The insert in graph (a) shows the decline in 
PFPN (ratio Y/F) with increasing N rate (Dobermann and Cassman, 2004). 
 
 
 



6 

The broadest measure of NUE is the ratio of yield to the amount of applied N, also called the partial factor 
productivity [PFPN] of applied N, which declines with increasing N application rates (Figure 1a insert). 
The PFPN is an aggregate efficiency index that includes contributions to crop yield derived from uptake of 
indigenous soil N, N fertilizer uptake efficiency, and the efficiency with which N acquired by the plant is 
converted to grain yield. In addition to N uptake by the crop and N losses, a portion of the N applied is 
retained in soil as residual inorganic N (either ammonium or nitrate) or incorporated into various organic 
N pools—including microbial biomass and soil organic matter.  Such retention should be considered a 
positive contribution to N input efficiency only when there is a net increase in total soil N content. 
Because more than 95% of total soil N is typically found in organic N pools, an increase in soil organic 
matter (i.e. carbon sequestration) is required to achieve increases in total soil N. Sustained increases in 
organic matter in cropping systems practiced on aerated soils (e.g. maize- and wheat-based systems 
without irrigated rice) result in greater indigenous N supply from decomposition of the organic N pools, 
which can reduce N fertilizer requirements to maintain yields and thereby increase PFPN (Bell, 1993; 
Kolberg et al., 1999). In contrast, greater soil organic matter in continuous irrigated rice systems does not 
necessarily result in an increase in N mineralization because there is little relationship between soil 
organic matter content and indigenous soil N supply in anaerobic soils (Cassman et al., 1996a; Dobermann 
et al., 2003). For cropping systems in which soil organic matter is declining over time, there is an 
additional loss of N above that from applied N fertilizer and organic N sources. This additional loss of N 
reduces PFPN and greater amounts of applied N are required to maintain yields.  

Figure 1 also illustrates how, alternatively to calculating NUE indices for few fixed levels of N application 
only, continuous response functions between yield, plant N uptake, and fertilizer N input can be fitted to 
more accurately quantify the curvilinear nature of crop response to N application. The incremental yield 
increase that results from N application at any point along the N response curve is the first derivative of 
the fitted model describing the relationship between yield and N rate, which we may also call the 
incremental agronomic efficiency from applied N (AEi = dY/dF in Fig. 1a). Likewise, the AEi is the 
product of the efficiency of N recovery from applied N sources (incremental recovery efficiency, REi = 
dU/dF in Fig. 1c) and the efficiency with which the plant uses each unit of N acquired from applied N to 
produce grain (incremental physiological efficiency, PEi = dY/dU in Fig. 1b). The REi largely depends on 
the degree of congruence between plant N demand and the available supply of N from applied fertilizer or 
organic N sources. Consequently, optimizing the timing, quantity, and availability of applied N is the key 
to achieving high REi. 

Global status of N use efficiency 

World consumption of N fertilizers has averaged 83 million metric tons (Mt) in recent years, of which 
about 47 Mt is applied to cereal crops (Table 3). The share of total N fertilizer consumption that is applied 
to cereals ranges from a low of 32% in Northeast Asia to more than 71% in SE Asia. At a global scale, 
cereal production (slope = 31 x 106 Mg yr-1), cereal yields (slope = 45 kg yr-1), and fertilizer N 
consumption (slope = 2 Mt yr-1) have increased in a near-linear fashion during the past 40 years. However, 
significant differences exist among world regions, particularly with regard to N use efficiency. On a global 
or regional scale, PFPN is the only index of NUE that can be estimated reasonably well, although not very 
precisely because of uncertainties about the actual N use by different crops. Because PFPN is a ratio, it 
always declines from large values at small N application rates to smaller values at high N application 
rates. Thus, differences in the average cereal PFPN among world regions depend on which cereal crops are 
grown, their attainable yield potential, soil quality, amount and form of N application, and the overall 
timeliness and quality of other crop management operations. 
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Table 3: Current levels of cereal production, nitrogen fertilizer use on cereals, and cereal nitrogen use efficiency 
by world regions. Values shown represent annual means for the 1999 to 2002/03 period. 
  

 Developed Transitional/Developing World

 North NE W E Europe Ocean. Africa W Asia South SE East Latin  
 America Asia Europe C Asia   NE Africa Asia Asia Asia America  

Cereal prod. (Mt) 377 19 208 216 34 98 81 307 141 447 144 2072 

Cereal yield (t ha-1) 5.1 6.1 5.5 2.1 1.9 1.1 2.3 2.4 3.2 4.8 2.9 3.1 

Total N use (Mt)1 12.5 0.9 9.5 4.9 1.3 1.4 4.2 14.6 4.0 24.9 5.1 83.2 

Cereal share N (%)2 66 32 45 51 67 56 56 50 71 58 53 57 

N use cereals (Mt) 8.3 0.3 4.3 2.5 0.9 0.8 2.4 7.3 2.8 14.5 2.7 46.7 

N rate (kg N ha-1)3 112 89 113 25 48 9 68 58 65 155 55 70 

PFPN (kg kg-1)4 45 71 59 90 46 123 34 44 53 32 55 44 

Relative PFP5 1.0 1.6 1.4 2.1 1.1 2.8 0.8 1.0 1.2 0.7 1.3 1.0 

1 Total fertilizer N consumption by all crops (FAO, 2004). 
2 Estimated share of cereal N use of total N consumption, calculated as weighted average of country-specific 
estimates of fertilizer use by crops (IFA, 2002). Weights were proportional to N use by countries. 
3 Estimated average N application rate on all cereal crops. 
4 Average partial factor productivity of applied N = kg grain yield per kg N applied. 
5 PFPN relative to world average (World = 1). 
 
At global level, PFPN in cereal production has decreased from of 245 kg grain kg-1 N in 1961/65, to 52 kg 
kg-1 in 1981/85, and is currently about 44 kg kg-1. This decrease in PFPN occurs as farmers move yields 
higher along a fixed response function unless offsetting factors, such as improved management that 
remove constraints on yield, shift the response function up. In other words, an initial decline in PFPN is an 
expected consequence of the adoption of N fertilizers by farmers and not necessarily bad within a systems 
context. 

In developing regions, N fertilizer use was small in the early 1960s and increased exponentially during the 
course of the Green Revolution. Although the growth rate in N consumption has slowed substantially in 
recent years, it still averaged 1.45 Mt N yr-1 (3.2% yr-1) during the past 20 years. The large increase in N 
use since the 1960s resulted in a steep decrease in PFPN in all developing regions (Fig. 2). However, 
average regional N rates on cereals range from less than 10 kg N ha-1 in Africa to more than 150 kg N ha-1 
in East Asia (Table 3) and, with the exception of Africa, PFPN continues to decline in all developing 
regions at rates of –1 to –2% yr-1 (Fig. 2). The low PFPN in East Asia, which is dominated by China, is of 
particular concern for the global Nr budget because this region uses the greatest amount of N fertilizer 
(Table 1). Declines in PFPN on cereal production in developing countries will likely continue without 
greater investment in research and extension to reverse this trend.  

In developed regions, excluding Eastern Europe/Central Asia, cereal yields have continued to increase in 
the past 20 years without significant increases in N fertilizer use. As a consequence, average PFPN has 
remained virtually unchanged at 49 kg kg-1 since the early 1980s. Trends of increasing PFPN have 
occurred in some regions (Fig. 3), e.g., Western Europe (mostly rainfed wheat with high yields) and 
Northeast Asia (irrigated rice).  
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In North America, average cereal PFPN has changed little because of low PFPN in dryland wheat areas 
with low and variable yields, while PFPN of maize has increased substantially (Dobermann and Cassman, 
2002). At present, average cereal yields in North America, Western Europe, and East Asia are 60 to 100% 
above the world average, even though the N rates applied are only 30 to 60% above world average rates 
(Table 3). High yields and high PFPN in these regions result from a combination of fertile soils, favorable 
climate, and improved crop and soil management practices, including N fertilizer management. Trends of 
increasing PFPN are likely to continue in developed countries because they primarily result from 
investments in research and extension on crop improvement, new fertilizer products, and better 
management technologies by both public and private sectors, at levels that greatly exceed those currently 
available in the developing world. 
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Figure 2: Regional trends in nitrogen use efficiency in cereals. Note: a logarithmic scale was used for the NUE axis. 
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The very high PFPN in Africa (123 kg kg-1) and Eastern Europe/Central Asia (90 kg kg-1) are indicative of 
soil N mining. Fertilizer use in Africa has lagged behind other world regions and is a major reason for the 
low cereal yields in this region (Table 3). In Eastern Europe and countries of the former Soviet Union 
(FSU), N fertilizer use on cereals dropped drastically in the late 1980s as a result of political and economic 
turmoil. Consequently, PFPN doubled from 1988 to 2000 without improvements in yield potential or 
major changes in N management.  Because these trends of increasing PFPN in both Africa and Eastern-
Central Europe are likely associated with a mining of soil N resources, they are not sustainable over the 
long-term and we would expect yields to stagnate or even decline unless greater amounts of N fertilizer 
are used in cereal production. 

The trends shown in Figure 2 depend on the reliability of the aggregate data on crop yields and fertilizer 
use. Both are difficult to validate. Data on fertilizer use by individual crops within countries and regions 
are notoriously difficult to obtain and we do not have reliable series. For many countries, the values used 
were derived from estimated total N fertilizer use and expert estimates of the average N fertilizer use by 
crop (IFA, 2002). Very few countries collect more detailed information. Despite these caveats, there are 
several pieces of supporting evidence. One assumption we made in calculating trends in NUE (Fig. 2) is 
that the share of total N fertilizer consumption by cereals within a region has not changed substantially 
since the early 1960s. In the USA, for example, surveys of cropping practices are annually conducted with 
sample sizes of several thousand farmers (http://www.ers.usda.gov). Those data indicate that the cereal 
share of total N consumption has remained virtually unchanged since the mid 1960s. In our approach, 
average PFPN for rice grown worldwide was estimated at 44 kg kg-1 (data not shown). This value is in 
reasonable agreement with an average PFPN of 46 kg kg-1 as directly measured in on-farm studies 
conducted on 400 farmers’ fields in South Asia, East Asia, Southeast Asia and West Africa (Adhikari et 
al., 1999; Wopereis et al., 1999; Haefele et al., 2001; Dobermann et al., 2002) 

The relationship between the mean national cereal yield and the mean rate of N fertilizer applied to cereal 
crops on a country-by-country basis is linear and it provides an estimate of the ‘global’ average AEN in 
cereals (Fig. 3).  On a global basis, the slope of the regression suggests that global cereal production will 
increase by 30 kg ha-1 for each kg of additional N fertilizer. The slopes and intercepts (yield at zero N 
applied), however, differ significantly among crops (Cassman et al., 2003). Rice, for example, often yields 
more with no N fertilizer applied than wheat or maize because of greater N supply from indigenous soil 
resources. Thus the slope of the regression is lower for rice (26 kg kg-1) than for wheat and maize (36-41 
kg kg-1, not shown). Actual N response within countries or at farm level varies widely due to differences 
in climate, soil fertility and the technological sophistication of crop management. 

Figure 3 also illustrates the potential global impact of increasing NUE in agricultural systems. If losses of 
cereal cropping area continue at present rates and fertilizer-N efficiency cannot be increased substantially, 
a 60% increase in global N consumption by cereals or 74% increase in average N rates per ha would be 
required to meet the predicted 38% increase in cereal demand by 2025 (Scenario 1). Such a large increase 
in N consumption would have major environmental consequences at local, regional, and global scales 
through continued accumulation of different forms of Nr. On the other hand, the predicted cereal demand 
can be met by only a 30% increase in global N fertilizer use on cereals if the incremental cereal yield 
response to applied N can be increased by about 20% within a period of 20 years (Dobermann and 
Cassman, 2005). Such a level of increase in NUE is well within the scatter of the present ‘global N 
response curve’, i.e., there are many countries in which even higher NUE has already been achieved. 
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Ladha et al. (2005) provide a summary of published literature data on fertilizer-N efficiency in cereal 
crops. In their analysis, the average REN in aboveground biomass (grain+straw) in research plots was 44% 
in rice, 54% in wheat and 63% in maize (Table 4). Recovery in grain alone averaged 35 to 44% for the 
three major cereals, which is significantly higher than the crude global estimate (33%) suggested by Raun 
and Johnson (1999). Not included in this is fertilizer-N recovered in roots, N recovered in subsequently 
grown crops, and N that remains in the soil N. 
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Figure 3:  Global relationships between average cereal yields and average fertilizer-N use for 81 countries during 
the late 1990s. The solid line indicates the present average N response of all cereals to fertilizer N application. The 
dashed line indicates a possible increase in NUE due to a 20% increase in the slope of the average N response 
(�Y/�Nrate), but no change in the intercept. Drop lines and values in the table show the effect of different N 
response on present and required N rates and NUE at global yield levels for two future scenarios in which cereal 
harvest area continues to decline slowly until 2025, but NUE either increases or decreases: [1]: No change in the 
global N response function. Yield increases are mainly associated with increasing N rates (move along the current N 
response function); [2]: A 20% increase in the slope of the global N response function. Yield increases are 
associated with increasing N rate and increasing NUE (Dobermann and Cassman, 2005). 

In field studies with rice and dryland systems, average 15N fertilizer recovery was 3.3% in the 1st 
subsequent crop, 1.3% in the 2nd subsequent crop, 1.0% in the 3rd subsequent crop, 0.4% in the 4th 
subsequent crop, and 0.5% in the 5th subsequent crop, or 6.5% in total (IAEA, 2003; Krupnik et al., 2004). 
Thus, together with an average first-crop REN of 51% (difference method) or 44% (15N method), total crop 
N recovery from a one-time application of N averages about 50 to 57% in research trials with cereals. The 
remainder is either stored in soil organic matter pools or lost from the cropping system. In the IAEA trials, 
the average amount of 15N fertilizer recovered in soil after five growing season was 15 %, suggesting that, 
under research conditions, about 30 to 35% of the fertilizer-N applied is typically lost from the system. 
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Detailed research studies provide valuable insides into N pathways and the processes that lead to N losses 
in agricultural systems. However, results from research plots cannot be extrapolated to obtain estimates of 
NUE at regional or global scales because N losses in farmers’ fields are often much larger. Unfortunately, 
little is known about the current level of NUE in key cropping systems of the world at the scale of typical 
production fields. This shortage of information reflects the logistical difficulty and high cost of obtaining 
direct on-farm measurements and the lack of funding for what appear to be routine on-farm evaluations 
(Cassman et al., 2002). 

Table 4. Average apparent first-crop recovery efficiency of applied fertilizer-N in cereals (REN = fertilizer-N 
recovery in above-ground biomass). 

Crop Region Average N rate REN 

 (no. of observations) (kg N ha-1) (%) 

Maize, research trials1 World (36) 102 63 
Maize, on-farm2 USA (55) 103 37 

Rice, research trials1 World (307) 113 44 
Rice, on-farm3 Asia (179) 117 31 

Wheat, research trials1 World (507) 117 54 

Average research trials1 World (850) - 51 

1 Ladha et al. (2005) 
2 Cassman et al. (2002) 
3 Dobermann et al. (2002) 
 
The few available on-farm studies generally suggest a greater disconnection between the amount of 
fertilizer N applied by farmers and the crop yield that is achieved, resulting in often low and highly 
variable NUE among and within farmers’ fields. Irrigated rice is the only cropping system for which 
systematic on-farm measurements of NUE have been conducted for numerous regions in Asia and West 
Africa (Cassman et al., 1996b; Dobermann et al., 2002; Haefele et al., 2003). Average REN in irrigated 
rice fields in Asia was 31% as compared to 44% in research trials (Table 4). Similarly, whereas Ladha et 
al. (2005) cited an average AEN in rice of 21.6 kg kg-1 and average PFPN of 63.2 kg kg-1, measured on-
farm averages in south and southeast Asia were 11.5 kg kg-1 and 49.2 kg kg-1, respectively (Dobermann et 
al., 2002). Major conclusions drawn from the on-farm studies with rice were (Olk et al., 1999; Dobermann 
et al., 2003; Dobermann et al., 2004):  

(i) Large spatial and temporal variability exists among fields with regard to indigenous N 
supply, fertilizer use, crop yields, NUE, and marginal return from N fertilizer;  

(ii) Grain yield obtained by farmers is closely correlated with plant N uptake, but not 
with fertilizer N use; 

(iii) NUE varies widely and is often not related to N rates or the supply of N from soil; 
(iv) Climate, the supply of other essential nutrients, disease, insect pest, and weed 

pressure, stand establishment, water management and N management technology 
(timing, forms, placement, etc.) have large effects on REN and PEN and, therefore, the 
overall crop response to N fertilizer, and 

(v) It is difficult to predict the dynamic N supply from indigenous sources using simple 
assessment methods such as soil tests. 



12 

Extensive on-farm studies of similar kind and nearly global scope have not been conducted in other 
environments or for other major cereal crops. This makes it difficult to judge whether the findings made 
for rice systems are applicable to other crops and cropping systems. However, there is some evidence that 
this may be the case for wheat grown in rice-wheat systems of south Asia and maize grown in rainfed and 
irrigated systems of the USA Corn Belt (Adhikari et al., 1999; Cassman et al., 2002). On-farm studies 
with maize in the U.S. Corn Belt also showed much lower average REN of 37% (Table 4) than the ‘global’ 
average of 63% cited for maize in Ladha et al. (2005). A similar discrepancy occurs for PFPN in maize, 
with a computed research trial average of PFPN of 69.9 kg kg-1 (Ladha et al., 2005) as opposed to an 
average value of 58 kg kg-1 estimated for maize in the USA (Dobermann and Cassman, 2002). The latter 
was estimated at national scale based on crop yield statistics and large annual surveys of farmers’ fertilizer 
use. 

Lower NUE in farmers’ fields is usually explained by a lower level of management under practical 
farming conditions and greater spatial variability of factors controlling REN and other indices of NUE 
(Cassman et al., 2002). Considering this, NUE achieved in research trials is a good indicator of what can 
be targeted with good management, but farm-level NUE is always lower. It is reasonable to assume that, 
on a global scale, at least 50% of the fertilizer-N applied is lost from agricultural systems and most of 
these losses occur during the year of fertilizer application. It has also been demonstrated, however, how 30 
to 50% increases in NUE in rice can be achieved through field-specific management approaches 
(Dobermann et al., 2002). 

What can be done to increase nitrogen use efficiency? 

Is a 20% increase in the incremental yield response to applied N (Fig. 3) achievable at the global scale 
over a time period of about 20 years? To answer this question it is important to re-iterate that a 20% 
increase in this incremental N efficiency, as estimated by the slope of the regression line in Figure 3, is not 
equivalent to a 20% increase in the overall NUE (or PFPN). On a global scale, higher cereal yields are 
likely to be achieved through a combination of increased N applications in regions with low N fertilizer 
use, such as Africa and parts of Asia and Latin America, and improved N fertilizer efficiency in countries 
where current N fertilizer use is already high. For example, the global PFPN in cereals only needs to 
increase at a rate of 0.1 to 0.4% yr-1 to meet cereal demand in 2025 (Dobermann and Cassman, 2005). 
Such rates have been achieved in some developed regions in the past 20 years (Fig. 2), and far greater 
rates of increase have been achieved in several countries. 

In the UK, our estimates suggest an average cereal NUE of 36 kg kg-1 in 1981/85, which increased to 44 
kg kg-1 by 2001/02 (+23%, 1.1% yr-1). In the USA, annual surveys of cropping practices indicate that 
NUE in maize increased from 42 kg kg-1 in 1980 to 57 kg kg-1 in 2000 (+36%, 1.6% yr-1)(Dobermann and 
Cassman, 2002). In Japan, NUE of irrigated rice remained unchanged at about 57 kg kg-1 from 1961 to 
1985, but it increased to more than 75 kg kg-1 (+32%, 1.8% yr-1) in since 1985 (Suzuki, 1997; Mishima, 
2001). In each of these countries, key factors that contributed to this improvement included: (i) increased 
yields and more vigorous crop growth associated with greater stress tolerance of modern cultivars, (ii) 
improved management of production factors other than N, and (iii) improved N fertilizer management. 
The latter may include use of better fertilizers and NUE-enhancing products as well as better application 
strategies and methods. The combination of these measures allowed achieving higher yields with either 
stagnating (USA) or declining N use (UK, Japan). 
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These improvements were achieved without general restrictions or regulations on N fertilizer use. They 
were driven by investments in public and private sector research and extension. Because of the large 
differences in NUE among countries, regions, farms, and fields within a farm, policies that focus only on 
increasing or decreasing N fertilizer use at a state or national level would have a widely varying impact on 
yields, farm profitability, and environmental quality. Instead, achieving greater NUE at state or national 
levels will require policies that favor increases in NUE at the field scale with emphasis on technologies 
that can achieve greater congruence between crop N demand and N supply from all sources—including 
fertilizer, organic inputs, and indigenous soil N (Cassman et al., 2002). 

Most of the fertilizer-N is lost during the year of application. Consequently, N and crop management must 
be fine-tuned in the cropping season in which N is applied in order to maximize system-level NUE. 
Numerous concepts and tools needed to increase NUE have been developed. These technologies can be 
divided into (1) those that enhance crop N demand and uptake (genetic improvements, management 
factors that remove restrictions on crop growth and N demand) and (2) management options that influence 
the availability of soil and fertilizer-N for plant uptake. The latter primarily include more efficient 
fertilizers (new N forms, modified fertilizers & inhibitors that lead to slow/controlled release), more 
efficient N application methods, and various forms of site-specific N management. It is important to 
understand, however, that many of the technology options have different effects on crop yield response to 
N and that it is often the combination of measures that leads to the greatest benefit (Fig. 4). 
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Figure 4: Generalized changes in crop yield response to fertilizer N application as affected by improvements in 
crops and/or crop and fertilizer management (Giller et al., 2004). 
A: Average N response function with low to medium fertilizer N efficiency.  
B: Shift in the curvature (slope) of the N response function due to increased fertilizer N efficiency. Measures to 
achieve this can include improved general crop management (plant density, irrigation, pest control, etc.) or improved 
N management technologies (placement, timing, modified fertilizers, inhibitors, etc.). 
C: Upward-shifted N response function, i.e., increase in the intercept (yield at zero N rate) but no change in the 
curvature because there is no increase in fertilizer-N efficiency. An increase in the 0-N yield may be due to an 
improved variety with greater N acquisition or greater internal N utilization, amelioration of constraints that 
restricted uptake of indigenous N, or other measures that increase the indigenous N supply.  
D: Shift in the intercept and curvature of the N response function, i.e., increase in both 0-N yield and slope through a 
combination of measures. Full exploitation of yield potential is achieved by implementation of a site-specific, 
integrated crop management approach, in which an advanced genotype is grown with near-perfect management, 
closely matching crop N demand and supply. As a result, both profit and fertilizer N use efficiency are highest. 
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It is beyond the scope of this paper to discuss specific technologies in more detail and the reader is 
referred to the recent literature on this (Schroeder et al., 2000; Cassman et al., 2002; Dobermann and 
Cassman, 2004; Giller et al., 2004; Ladha et al., 2005). Modern N management concepts usually involve a 
combination of anticipatory (before planting) and responsive (during the growing season) decisions. 
Improved synchrony, for example, can be achieved by more accurate N prescriptions based on the 
projected crop N demand and the levels of mineral and organic soil N, but also through improved rules for 
splitting of N applications according to phenological stages, by using decision aids to diagnose soil and 
plant N status during the growing season (models, sensors), or by using controlled-release fertilizers or 
inhibitors. The latter have a theoretical advantage over other, more knowledge-intensive forms of fined-
tuned N management in a sense that the knowledge is ‘embedded’ in the product to be applied. As 
experience with seeds shows, embedded knowledge can lead to high adoption rates by farmers, provided 
that the benefit : cost ratio is high. 

Important prerequisites for the adoption of advanced N management technologies are that they must be 
simple, provide consistent and large enough gains in NUE, involve little extra time and be cost-effective 
(Giller et al., 2004). If a new technology leads to at least a small and consistent increase in crop yield with 
the same amount or less N applied, the resulting increase in profit is usually attractive enough for a 
farmer. This is particularly relevant for developing countries or large-scale grain farms in North and South 
America or in Australia, where there is still potential and need to produce more food and feed. Where 
yield increases are more difficult to achieve, where increasing crop yield is of less priority, or where 
reducing the creation of Nr in agriculture is the top societal priority, adoption of new technologies that 
increase NUE but have little effect on farm profit may need to be supported by appropriate technology 
incentives.  

Summary 

Quantifying the status of NUE in agriculture is a difficult task because (i) definitions used in research 
papers and interpretation of different NUE indices vary and (ii) reliable data needed to compute NUE 
indices are often not available, particularly at national, regional and global scales. Worldwide, crops do 
not directly utilize about half of the applied N and the overall NUE has declined with increasing N 
fertilizer use. This trend seems to continue in many developing countries. In many industrialized countries 
NUE has been increased, even at high levels of cropping intensity and fertilizer use. Interventions to 
increase NUE and reduce N losses to the environment must be accomplished at the farm level through a 
combination of improved technologies and carefully crafted local policies that promote the adoption of 
improved N management practices while sustaining yield increases. Improved fertilizer products play an 
important role in the global quest for increasing NUE, but their relative importance varies by regions and 
cropping systems. 
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