

Indian Agricultural Research Institute, New Delhi
 Indian Council of Agricultural Research, New Delhi

Yield levels detern	ninant of limiting nutrients
Productivity (made tea), kg/ha	Limiting factor
Below 800	Nil
800 - 1000	N and K
1000 - 2000	N, P, K, Zn + liming
2000 - 3000	N, P, K, Zn + liming with material containing MgCO ₃
3000 - 4000	N, P, K, Zn, Mg, Si, B + liming, transport process within the soil
Above 4500	N, P, K, Zn, Mg, Si, Mo,B liming, transport process within the soil
	Tandon and Kimmo (1993)

Status of micronutrient deficiencies on global scale and in India

Zinc and boron deficiencies suspected in almost every country (Sillanpaa, 1982)

Indian scenario

- •Zinc deficiency most widespread (47%)
- •Boron deficiency (35%) From limited data
- •Iron deficiency (13%)
- •Molybdenum deficiency (7%) Limited data
- •Manganese deficiency (4%)
- •Copper deficiency (2%)

Nutrient	Fertilizer	Chemical formula	Minimun nutrient
			content(%
Zinc	Zinc sulfate heptahydrate	ZnSO ₄ .7H ₂ O	21
	Zinc sulfate monohydrate	ZnSO ₄ .H ₂ O	33
	Chelated zinc	Zn-EDTA	12
	Zincated urea	43% N)	2
	Zincated phosp	hate	19.4
	(Suspension, 12	$2.9\% P_2O_5$	

Micronutrient containing fertiliz	ers
included in the FCO of India	

Nutrient	Ferunzer	Chemical formul	a Minimum nutrient
<u> </u>		N DO 10HO	content(%
Boron	Borax	$Na_2B_4O_7.10H_2O$	10.5
	Boric acid	H ₃ BO ₃	17
	Di-sodium octa borate tetrahydrate	Na ₂ B ₈ O ₁₃ .4H ₂ O	20
	Boronated single super- phosphate(16	5% P2O2 powdered)	0.18

Nutrient	Fertilizer	Chemical formula	Minimun nutrient content(%
Iron	Ferrous sulfate	FeSO ₄ .7H ₂ O	19
	Chelated iron	Fe-EDTA	12
Manganese	Manganese sulfat	te MnSO ₄ .H ₂ O	30.
Copper	Copper sulfate	CuSO ₄ .5H ₂ O	24
Molybdenum	Ammonium molybdate	(NH ₄) ₆ Mo ₇ O ₂₄ . 4H ₂ O	52

ect of diffe	rent rat	es of Zi of oilseo	n applica ed crops	ation on y	/ield (q ha
Crop	No. of experime	eņts	/ha)		
		0	2.8	5.6	11.2
Groundnut	10	16.5	17.7	17.6	17.6
Raya	9	12.3	14.5	14.3	13.9
Soybean	5	6.3	7.4	8.2	9.5
Sesamum	2	2.1	2.3	3.0	3.2
				Nayy	ar <i>et al</i> . (19)

	-				
Methods of	Rates of Zn (kg ha ⁻¹)				
application	2.8	5.6	11.2		
Broadcast & mix	7.0	9.8	11.7		
Drill	8.0	5.7	6.2		
Band placement	3.7	4.7	5.3		
Top dressing*	1.3	4.2	4.5		
Control	39.6				
CD (P=0.05)	6.0				

Source	Zn rate	Grain yield	Zn uptake
	(kg ha ⁻¹)	(q ha ⁻¹)	(g ha ⁻¹)
Control	0	19.8	36
ZnSO ₄	11	41.0	104
	22	52.0	143
ZnO	11	36.7	81
	22	41.6	97
Zn-frits	11	37.4	85
	22	40.3	95
MMCM	11	37.4	90
	22	50.8	126
CD(P=0.05)	Source	4.8	13
	Zn rate	7.1	14

Particulars	Grain yield (q ha ⁻¹)	CD (0.05)
Control	33.1	
Zn treated	38.0	
Sources		
Zinc sulfate	39.6	1.5
Zinc oxide	37.1	
Zinc phosphate	37.4	
Methods		
Broadcast	37.2	1.2
Band placement	38.8	
Rate (kg Zn ha ⁻¹)		
5.0	35.5	1.2
10.0	40.3	

yield	and mic	ronutri	ient con	nposit	n ary tion of	matter rice
Treatment	Dry matte	r Zn con	tent Ra	tios in	rice	DTPA
	(g pot ⁻¹)	(mg kg	g ⁻¹) Cu/Zı	n Mn/Z	n Fe/Zı	n Zn
						(mg kg ⁻¹)
Control	5.46	21	1.8	9.1	11.0	0.4
EDTA	9.22	25	3.5	8. 7	18.4	0.3
DTPA	7.46	25	3.0	7.3	13.5	0.4
Zn-EDTA	7.55	83	0.6	2.1	3.8	1.9
Zn-DTPA	8.71	80	0.5	2.0	5.3	1.9
ZnSO ₄ .7H ₂ C	9.26	53	0.5	2.9	4.7	1.8
CD (P=0.05)	3.30	15				0.3

Zn sources		Zn applied (kg ha ⁻¹)			
	0	0.11	0.33	1.12	3.36
Control	3.9				
Zn-EDTA		8.6	8.7	9.5	8.8
ZnO		8.2	8.2	8.6	9.1
ZnSO ₄		8.3	8.9	8.7	9.1
Zn-NH ₃ comple	ex	7.8	8.6	8.5	8.8
ZnSO₄-UAN		8.2	8.2	8.9	8.8

Relative availability coefficients (RAC) of Zn-fertilizers in corn

Fertilizer	Water solubility	RA		
	(%)	Yield	Zn uptake	
			А	B
Zn-EDTA	100	70	100	
ZnSO ₄	100	77	23	100
Zn lignosulfon	ate 100	100	22	94
Zinc oxide (55) 55	60	12	48
Zinc oxide (26) 26	37	0.5	1
Zinc sucrate	1	14	5	21
A: Computed wit	h EDTA as 100; B: C	omputed with 2	ZnSO ₄ as 10	0
		Source: Gang	loff <i>et al</i> . (20	02)

		Vertis	01		
Crop	Zn (Mixed)	Zn+compost (Mixed)	Zn as zincated urea	Zn for surface transpl.	CD(5%)
		Inceptis	sol		
Rice (D)	1.32	1.32	2.41	1.73	0.37
Wheat (R)	0.45	0.45	1.19	0.47	0.13
Rice (R)	0.82	0.54	1.72	0.52	0.30
		Vertise	ol		
Rice (D)	1.37	1.49	2.70	1.42	0.34
Rice (R)	0.48	0.48	0.28	0.53	0.06

Species	Leaf		Shoot dry weight				Zn
	defici	ency	-Zn		+Zn	eff	iciency
	symp	toms ^a		(g/pla	nt)		(%)
<i>T. aestivum</i> Fa	kon 2		0.74±0.0)8	1.15±0.0	8	64
<i>S. cereale</i> Ph	ito 5		1.18±0.0)7	1.34±0.0	7	88
<i>Triticale</i> pluto 2	x 4		1.10±0.2	20	1.51±0.0	2	73
Fakon							
LSD (P=0.05)			0.20	5	0.12		

Source	Mode	Zn rate	Grain yield (t ha ⁻¹		
		(kg ha ⁻¹)	Α	В	
Teprosyn (300 g Zn+	Seed coating	0.06	5.04	3.40	
$(300 \text{ g } 2\text{In}^{-1})$ 200 g P ₂ O ₅ /L))				
ZnO (80% Zn)	Seed coating	0.13	5.19	3.09	
ZnSO ₄ .7H ₂ O (21% Zn)	Basal (soil)	5.00	5.74	3.69	
CD (P=0.05)			0.07	0.25	

Interacti	on harvest of soybean	seed with FYM X Zn
FYM (t ha ⁻¹)	Zn (kg ha ⁻¹)	Interaction yield (kg ha ⁻¹)
4	3	26
4	6	133
4	12	62
8	3	187
8	6	240
8	12	125
16	3	260
16	6	134
16	12	-35
		Singh (1998)

Crop	Rate o	ion (kg ha ⁻¹)	
	0	1.5	2.5
Groundnut	18.9	21.3	23.1
Mustard	12.5	15.6	14.6
Sunflower	17.5	20.7	16.7

Treatments	Grain yield (q ha ⁻¹
Borax (kg ha ⁻¹)	
0	7.58
10	23.08
20	26.48
30	23.28
CD (P=0.05)	
Methods	
Full soil	19.82
Half soil + half foliar (2)	21.12
Full foliar (3)	19.41
CD (P=0.05)	0.56
CD (P=0.05) () indicates number of foliar spray	Source: M

Effect of rate and freq	uency	of B applic	ation on	cumulative
grain yield response	(t ha ⁻¹)	and total B	uptake	(g ha ⁻¹) in
	_	• •		

Treatment	Rice-v	vheat	Maize-m	ustard
(kg borax ha ⁻¹)	Grain	Uptake	Grain U	U <mark>ptake</mark>
8 kg to 1 st crop only	2.34	261	0.82	127
8 kg to alternate crop	5.26	722	2.24	466
8 kg to each crop	6.80	1311	3.85	954
16 kg to 1 st crop only	4.19	584	1.44	3 91
16 kg at two crops interval	6.85	1288	3.61	973
16 kg to alternate crop	9.28	1696	4.61	1099
16 kg to each crop	5.45	2622	3.49	2063
32 kg to 1 st crop only	3.95	925	2.21	880
32 kg at two crops interval	6.82	2709	3.60	1657
0.25% boric acid solution spray thrice to each crop	2.81	851	2.03	694

Treatment	Grain yie	eld (q ha ⁻¹)	Fe-uptak	e (kg ha ⁻¹)
	UP	Р	UP	Р
Foliar applicatio	n (FeSO ₄ .7H ₂	0%)		
0.5 (6)	37.8		1.76	
1.0 (3)	38.5		1.83	
2.0 (3)	44.7	84.6	2.22	3.98
3.0 (3)	55.1	87.0	2.50	
Soil application ((FeSO ₄ .7H ₂ O	kg ha ⁻¹)		
100	15.7	65.4	1.18	2.04
200	26.6		1.13	
Control	15.0	56.3	1.01	1.87
CD (P=0.05)	3.3	6.0	0.84	0.73

Iron content in some tissues of a transgenic rice line expressing soybean ferritin cDNA

Seed	Leaf	Stem	Root
	—— (μg Fe/ g dr	y weight)	
Transformants			
(Fk 1) 38.1±4.5 ^a	104.8±7.9 ^b	162.8±8.1 ^b	962.1± 65.6 ^b
(Fk 11) 35.9±7.7 ^a	98.8±25.8 ^b	175.5±17.2 ^b	966.8± 105.7 ^b
Nontransformants			
(N 4) 14.3±3.0 ^a	119.3±8.9 ^b	170.0±5.3 ^b	956.0±37.4 ^b

a: Significant or b: nonsignificant differences between the mean values were calculated by F test (P<0.05)

Source: Goto et al. (1999)

Source	Rate	Grain yield	GrainMn conc.yield(mg kg ⁻¹)		Mn uptake (g ha ⁻¹)
		(t ha ⁻¹)	Grain	Straw	
	Soil :	applicati	on		
MnSO ₄ .H ₂ O	20 kg Mn ha ⁻¹	2.58	13.0	7.0	65
	40 kg Mn ha ⁻¹	2.70	14.5	7.5	74
	Seed	treatme	nt		
MnSO ₄ .H ₂ O	75 g kg ⁻¹	2.90	14.8	13.5	114
Teprosyn-Mn	5 mL kg ⁻¹	2.50	17.3	14.0	102
	Fol	iar Spray	y		
MnSO ₄ .H ₂ O	0.50%	3.85	16.5	12.3	150
	1.00%	4.00	17.8	14.0	173
Mn-EDTA	0.10%	3.73	16.0	11.3	137
	0.25%	4.05	18.0	13.0	166
Control yield (t ha ⁻¹)	2.25	11.8	6.3	52
LSD (P=0.05)		0.69	4.2	3.1	32

Treatment	Yield
	(q ha ⁻¹)
Soil application (10 kg CuSO ₄ ha ⁻¹)	136 (105)
Foliar spray (0.2% CuSO ₄ at 60 &	148 (100)
90 DAT)	
Seed soaking (0.05% CuSO ₄ solution	155 (108)
for 3 h)	

Effect of modes of mo o	lybdenum a f soybean	application on yield
Mode of application Yie	eld at control (q ha ^{.1})	Grain yield response (q ha ^{.1})
Soil (0.5 kg Mo ha⁻¹)	8.45	6.5
Foliar (0.05% Mo sol.)*	8.65	4.4
* At 60 and 90 days after so DAS for wheat;() indicates	wing (DAS) fo yield at contr	or soybean; 120 and 150 ol;
		Dwivedi <i>et al.</i> (1990)

Mo leve	ls Yiel	d (q ha⁻¹)	Yield respon	ses (q h
(ky/lia)	Groundnu	t Soybean	Groundnut	Soybea
	(pod)	(grain)		
0	15.4	18.2		
0.2	15.9	20.9	0.5	2.7
0.4	21.6	22.2	6.2	4.0
0.6	18.4	22.1	3.0	3.9
0.8	14.2	22.9	-1.2	4.7

Effect of molybdenum a uptake by soybean grai	t of molybdenum application on the grain yield and Mo ce by soybean grains Sharma and Minhas (1986)	
Treatment	Yield (q ha ⁻¹)	Mo uptake (g ha [.] 1)
Soil application (g ha-1)		
Moo	18.6	0.21
Mo ₃₅	17.7	0.23
Mo ₇₀	21.8	0.29
Mo ₁₀₅	26.7	0.29
Mo ₁₄₀	24.1	0.31
Seed treatment		
Moo	15.5	0.15
Mo ₃₅	19.5	0.27
Mo ₇₀	18.4	0.48
Mo ₁₀₅	19.3	0.61
Mo ₁₄₀	19.5	0.71
CD at 5%	3.22	0.19

Philosophy of micronutrient fertilization

- Shotgun or insurance application
 Hazardous particularly for B and Mo
- Prescription application
 Widely followed
- Product research essentially centers around single micronutrient carrier

Source: Mortvedt (1991)

Projected product requirement in 2025 AD

Products	Reference
Zinc sulfate 3-5 lakh tons	Rattan <i>et al</i> . (1997)
Zinc sulphate 15 lakh tons Copper sulfate 11,363 tons Iron sulfate 1,71,426 tons Manganese sulphate 18,331	Takkar <i>et al</i> . (1997) tons

Fertilizers	Installed I	Producti	on Use	Price-range
(capacity (t)	(t)	(%)	(Rs/t)
Zinc sulfate (132)	157,050	58,440	83+11	8,000-12,000
Ferrous sulfate (27)	47,605	33,530	12+14	700-3,000
Copper sulfate (43)	22,685	12,470	14	31,000-50,000
Manganese sulfate (8)	7,270	4,100	22	6,500-13,250
Borax (12)	30,400	21,950	7	24,000-30,000
Solubor (1)	5,000	3	100	69,000
Ammonium molybdate (6)	80	35	20	2,60,000-4,75,000
Chelated zinc (21)	1,785	360	100	1,10,000-2,00,000
Chelated iron (13)	1,100	274	100	1,10,000-1,50,000
Mixtures				
Soil application material	19,852	10,051	100	8,000-30,000
(88)				
Powder for spray (70)	8,953	4,107	100	3000-12,500
Liquid for spray (000L) 46	5 1,480	908	100	40-110 (Rs/L)

Year	Production (ton
1985-86	27,178
1986-87	35,564
1987-88	41,708
1988-89	37,660
1989-90	42,445
1990-91	55,390
1991-92	58,440
2001-02	51,121
2002-03	48,978

Conclusions

- Carriers with single micronutrient are agronomically most effective
- Soil application for Zn, Cu, B and Mo under continuous monitoring for whole cropping sequence is a sustainable practice
- Foliar sprays superior for Fe and Mn
- Biotechnological options for Fe, Zn and Cu fortification
- System based integrated micronutrient management is an effective strategy
- Product modification needed for specific soil and crop situations
- Need for change in GOI policy to assign at least zinc sulfate production to the major fertilizer industry

