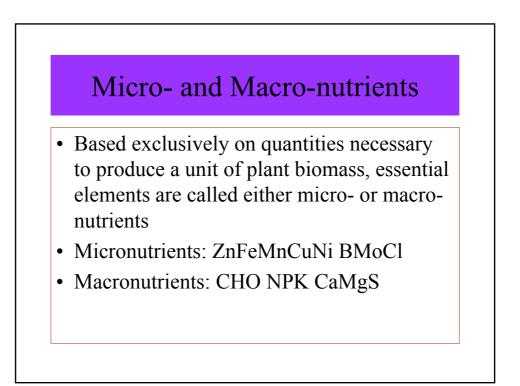
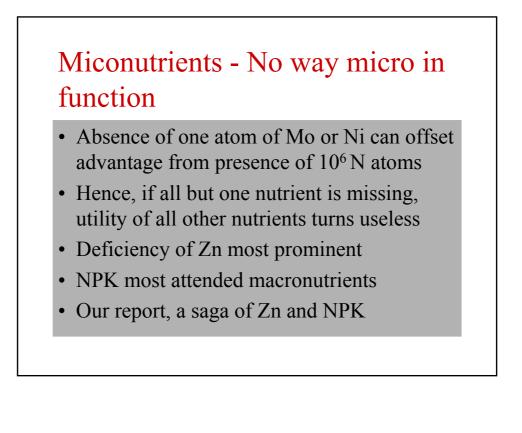

Plant Nutrition

- Growth and development outcome of several processes
- Growth mass accumulation of carbon
- Development morphological, beginning and ending of plant organ differentiation
- Nutrition sum of processes by which a plant takes and utilizes food for growth and development
- Nutrition determinant of yield


Plant Nutrients

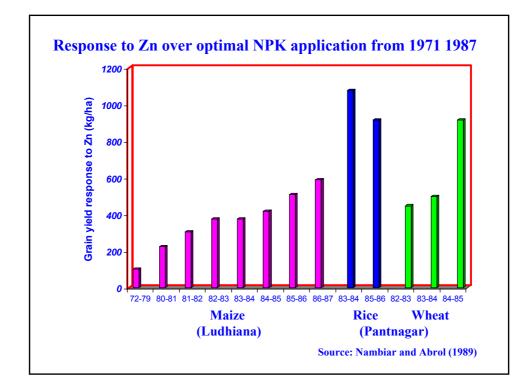
- Sub-optimal supply impairs vigorous and healthy plant growth and development
- Exclusion of any one, hinders plant to complete life cycle
- Primary function of transforming photo-energy into chemical energy and of synthesizing substances that constitute living matter cannot be performed by a substitute
- These 17 elements are called 'essential elements'



Plant Nutrients

- On account of direct involvement in plant nutrition, essential elements are referred to as 'plant nutrients'
- Other than group of 17 elements, some more are useful for some plants but do not benefit others
- Example: Si and rice and Co and N₂ fixation; classified as beneficial elements

Туріс		ions (mg ro-nutrie	/kg)of macro- nts
N	15,000	Fe	100
К	10,000	Mn	50
Са	5,000	Zn	20
Р	2,000	Мо	0.1
S	2,000	Ni	0.1


		ea (A) and y	
Variable	Rice	Wheat	Food grains
Period 19	80-81 to	1989-1990	
A	3.6	3.6	2.7
Р	0.4	0.5	-0.2
Y	3.2	3.1	3.0
Period 19	90-91 to	1999-2000	1
A	2.0	3.0	2.1
Р	0.6	1.5	-0.1
Y	1.35	1.49	2.1

grains ((FG), gr d (GIA)	oss sown	ates of foo (GSA) ar PK use ar
GSA (Mha)	GIA (Mha)	NPK (kg/ha)	Population
		to 1989-9	
0.66	1.23	46.5	16.3
Period:	1990-91	to 1999-()0
0.94	1.50	76.0	17.5

	onse to app fertili		
Period	Rise in	Gain in	Response
	fertilizer	food	(kg grain
	consumption	grain	kg ⁻¹ NPK)
	(M tons)	productio	n
		(M tons)	
1967-1983	3.71	43	12
1984-2000	11.4	66	06

DMY	Total	nutrient	uptake	(kg ha ⁻¹)
(t/ha)	Zn	Fe	M n	B
84	1.8	12.8	3.0	1.9
108	2.1	14.6	3.6	2.1
134	2.4	16.3	4.2	2.4

-	n from 19	nt crops to Z 67-1983 (414 eriments)	
Crop	Respo	nse range (k	g/ha)
	<200	200-1000	>1000
Rice	32	57	11
Wheat	47	46	7
Sorghum	67	33	-
Pearl Millet	63	36	1
Total	42	49	9

Location	Initial value of	Av	ailable Zn after	• 16 yr
	available Zn	NPK	NPK+Zn N	PK+FYM
Ludhiana	1.10	0.61	0.94*	1.25
Delhi	1.10	1.30	2.90	1.30
Coimbatore	2.60	0.34	2.76	0.38
Jabalpur	0.60	0.44	4.82	0.90
Pantnagar	2.54	0.83	1.05**	1.04

*Zn @ 10 kg ha⁻¹ every 4 to 5 years; ** Foliar spray; In all other locations annual application of 5-10 kg Zn ha⁻¹. Source: Nambiar (1994)

Location	Initial value of available micronutrients			Available n correspond		
				NPK after		
	Fe	Mn	Cu	Fe	Mn	Cu
Ludhiana	4.8	5.1	0.4	5.4	6.1	0.3
Delhi	10.6	20.0	1.4	24.2	9.2	2.4
Coimbatore	2.8	27.4	1.4	2.8	8.5	1.5
Jabalpur	6.5	8.3	1.0	15.1	12.0	1.4
Pantnagar	29.0		2.9	41.3	25.8	4.4

Source: Nambiar (1994)

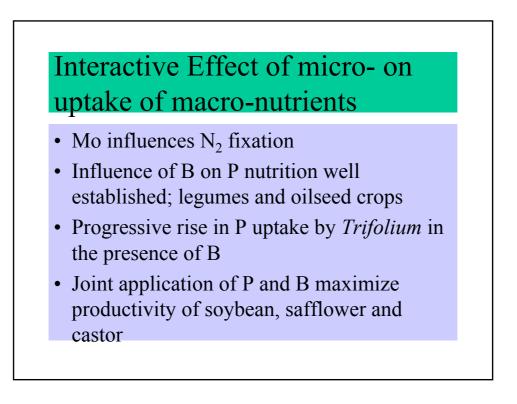
Total Micronutrient contents

Micronutrient	India	World
Zn	20-97	17-125
Fe	13 to 18000	-
Mn	38-1941	60-1300
Cu	11-141	6-80
В	2.8-630	9-85
Мо	Traces-12.3	1-3

Available micronutrient content
of Indian soils and critical limits

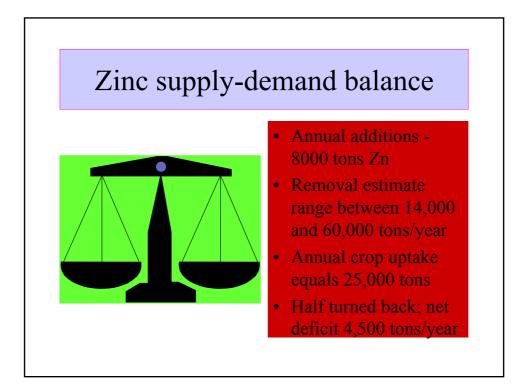
Nutrient	Mean	Critical	
		limit	
Zn	0.54	0.6	
Fe	20.5	4.5	
Mn	26.0	2.5	
Cu	1.7	0.2	
В	1.7	0.5	
Мо	Tr2.8	0.2	

Response of crops to micronutrients over and above NPK application


Crop	Soil	Response
Boron		
Safflower	Vertisol (HWS B 0.11 ppm)	100 kg seed and 70 kg oil yield ha ⁻¹ over 75 kg N ha ⁻¹
Blackgram	B deficient calcareous	30% increase in yield over 30 kg K ha ⁻¹
Iron		
Groundnut	Alfisol calcareous	30% increase in yield over recommended NPK
Chickpea	Entisol calcareous	500 kg ha ⁻¹ increase in grain yield
Sorghum	Vertisol calcareous	1.9 t ha ⁻¹ increase in yield over NPK
		Compiled from various sources

Response of crops to micronutrients over and above NPK application

Crop	Soil	Response
Manganese		
Wheat	Sandy loam	Drymatter yield and N
	(DTPA Mn	uptake increased in presence
	2 ppm)	of Mn over applied N
Rice	Alluvial sandy	Increased yield by 430 kg/ha over 100 kg P ₂ O ₅ ha ⁻¹
	DTPA Mn	8 2 3
	2.15 ppm)	
Molybdenum		
Pigeon pea		Increased grain yield by 400
		kg ha ⁻¹ over applied P
Trifolium		20% increase in fodder yield over applied P
		Compiled from various sources


Interactive Effect of micro- on uptake of macro-nutrients

- PxZn interaction Zn deficiency interferes with P metabolism. Application of Zn corrects it; a typical case of nutrient imbalance
- Ni associated with N nutrition of higher plants. Usefulness in urease functioning
- Maximum response to urea-N with Ni treatment

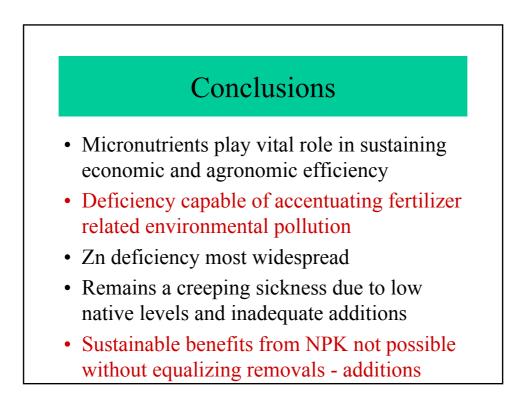
Extent and regions of micronutrient deficiency

- Analysis of some 200,000 soil and 50,000 plant samples place Zn deficiency ahead of all other micronutrients. Nearly 50% samples found Zn deficient compared to less than 10% with other micronutrients
- Several factors responsible for it:
 - i. Native level of micronutrients
 - ii. More removals, less additions

Extent and regions of micronutrient deficiency

iii. Deficient soils and inefficient crops need supplementation with Zn to ensure optimum response from uptake of macronutrientsiv. Deficiency provoked by some soil characteristics: soil aridity, OM depletion, alkaline reaction, calcareousness, light

v. Submergence and inefficient types


texture

Conclusions

- Enhancing Zn use necessary use fully installed capacity, enhance efficiency of use
- Development of micro-macro nutrient fertilizer combinations
- Infuse organic manure use in soil fertility management scheme
- Harness genetic potential, a practicable and economically viable option

