

IFA Technical Conference

Chennai, India 24-27 September 2002

Presentation: Putting really cool ideas to work in phosphates

Vaughn Astley, IMC Global, USA

Improving the Future of IMC Phosphates Through Technology Development

Technology Development Focus on How TD Started, How We Put Really Cool Ideas to Work A Few Examples of Projects

Technology Development So How Did We Get Started?

So What Was The Problem A \$2 Billion Company With No Long Term Technical Focus. IMC Needed a Way to Develop New Products and Apply Latest Technologies

So What Was The Problem, Really

- Company Had a Lot of Ideas but Could not Manage to Study Them All
- No Project Evaluation Process
- Many Areas Were Backlogged With Existing Work Load and Short Term Projects

How do we Begin to Evaluate All the Potential Projects and Ideas

- Need Increased Resources
 - Separate from Day to Day Operations
- Must Also Look to Outside for Help
 - Infusion of Technology
 - Don't Reinvent or Develop Stuff

Who or What is Out There

- Industrial Contract Organizations
- Universities

In House

- Cons
 - Stalled projects
 - Short term demands
 - Short of staff
- Pros
 - Dedicated inquisitive people
 - Knowledge base

 - Promotable group in training
 Proprietary information controllable
 Pride in accomplishments

 - Long hours are not charged for
 Can appreciate impact of work on other operational areas
 - If fully occupied, cheaper than contract

Industrial Contract **Organizations**

- Cons
 - Lack of secrecy
 - Lack of proprietary protection
 - Lack of detailed specific plant knowledge
 - Usually costs more than In-House
 - Need oversight to keep direction and costs in check
 Scope of work and goal must be well defined

 - Frequent project overview is required
- Pros

 - Wide general knowledge base
 - Specialized knowledge and experience in area of study
 - Flexible, varied manning availability
 - Can expeditiously stop funding

Universities

- Cons
 - Slow
 - Lack of secrecy
 - Lack of proprietary protection
 - Lack of detailed specific plant knowledge
 - Need oversight to keep direction and costs in
 - Preference for work that can be published
- Pros
 - Inexpensive
 - No pre-conceived ideas

So What Did We Do?

- Board Presentation Form an In-house Group, but With the Majority of Work Carried Out With Outside Assistance
- Called It "Technology Development" Rather Than "R & D"
- Essential to Fund It From Corporate
 No Charges to Local Operations
- Report to Chief Operating Officer
- No Rules

Goal and Objective of Technology Development

- Responsible for Developing New Technology to Lower Costs by \$10/ton DAP
- Explore Other Sources of Income
- Evaluate Projects or Proposals From Conceptual to Commercialized
- Find and Challenge the Paradigms
- To Funnel Projects Into Present Process & Project Engineering Structure
- To Take on Longer Term Projects Requiring Development

The Technology Development Group

- Formed Sept. 27, 1995 by JV Policy Board (Yes, We're Almost 7 Years Old)
- Mission is to Implement New Technology to Increase the Profitability of the Corporation
- We Were Told by Many, the Areas Where We Did Not Need to Look, or Should Not Work

The Technology Development Group

Senior Management Told Us Where We Were Not To Look For These Improvements Here's the List Areas Excluded From Technology Development

How Do We Work

- Work Performed Internally (Mostly Computer, Pilot Plant and Field)
- Contract with Experts (Over 100)
- Provide Tools for Others in Organization That Have Valuable Ideas But Cannot get The Tools
- Random Acts of Kindness
- We Welcome All Ideas/Problems/If Onlys

Our Focus

- 1996 Worked on 5 years Out
- 1997 Worked on 4 years Out
- 1998 Worked on 3 years Out
- 1999 Worked on 2 years Out
- o 2000 Worked on 2001
- 2001 Short Term Implementations
- 2002 Working on now, and 5 years Out

•Luckily, We were going Short Term when DAP price Fell

Talking Points Pointing Lee Fragines Noger Dilbet Rec Piline Programs Dilbet Conception Attack Controls Temas in Mining Pond Water Remediation Donnts

Pond Water - Reverse Osmosis

- Previous Efforts (~1980's)
 - Failed Because of Irreversible Membrane
 Fouling
- Pretreatment is Essential
 - Pond water is SuperSaturated Solution
 - Saturation Must be Relieved to Allow Removal of Water Without Precipitation

Pond Water - Reverse Osmosis

- Pre-Treatment developed that allows Pond Water to be processed through R. O. System
 - ~75% of Feed volume meets (exceeds) discharge requirements
 - Sludge volume reduced ~75%
 - ~70% of P2O5 Recovered in Concentrate
- Process Chemistry confirmed at bench & Pilot scale (Including R.O. System)
- Patent Applications Filed (Have Provisional)

Pond Water - Reverse Osmosis

- Pre-Treatment to De-Saturate System
- But Majority of P₂O₅ Retained in Solution
- OP₂O₅ Recovered as Concentrate Economic Value ~7 to 8% P2O5
- Permeate is Essentially Pure Water

PROCESS CONTROLS Development started in 1988 Process Control Computers Basic program language Rules and Fuzzy Logic Adaptive Controls On-Line Controls in 1990

PHOSPHORIC ACID PLANT ONLINE CONTROLS Sulfate Control Phosphoric Acid Strength Control Filter Feed Control Rock Rate

PHOSPHORIC ACID PLANT ONLINE CONTROLS Sulfate Control Phosphoric Acid Strength Control Filter Feed Control Rock Rate Rock rate set based on filter feed level

DAP APC Objectives Improve DAP Plant Controls Stabilize the process PC based controls Additional instrumentation Determine optimum operating parameters Reactor mole ratio and gravity Improve Granulation

