

IFA Technical Conference

New Orleans, Louisiana, USA 1-4 October 2000

The Role of Coatings and Additives in Improving the Performance of Fertilizer Products of The Nufarm Group

Victor Granquist, CFPI - Nufarm and Lobeco Products Inc, USA

Fertilizer Characteristics Demanded by the Market

Narrow size distributionShape: roundness and surface smoothness

- •Hardness: high crush strength, resistance to attrition
- •Free from excessive dust and caking
- •Low moisture content
- •Resistance to moisture absorption

Criteria for Quality Fertilizer

- •To deliver a high-quality product, the manufacturer must:
- Produce a high-quality granule (the role of process and process additives)
- Preserve the quality during storage, handling and shipping (the role of coatings and conditioning agents)

The Role of Fertilizer Coatings

•Coatings can preserve quality by:

- reducing caking tendency
- delaying or preventing moisture pickup
- minimization of dust generation
- reduction of attrition during handling
- improving flowability

•Key item: prevent caking and moisture pickup

Prevention of Caking

•Shape and smoothness of surface

•Narrow particle size distribution

•Hardness (avoid plastic deformation)

•Termination of crystal growth and modification of crystals formed (prevent crystal bridging)

- •Low moisture absorption tendency
- •Good Lubricity

The Development of Coatings

•For crystal termination and modification, the technology has evolved over the years:

- 1. Particulates (talc, clay, DE or keiselguhr)
- 2. Water-soluble surfactant technology
- 3. Coating oils
- 4. Complex formulations with oil-soluble surfactants in oil and wax base
- 5. Improved anti-caking and hydrophobic performance

Hydrophobic Performance Patent EP 692468 Galoryl WR Product Range

Anti-caking vs Hydrophobic Performance

•There is a compromise between optimum hydrophobic performance and anti-caking performance

•CFPI was able to find a good compromise, but only after developing new formulation technology, patented under: EP 702999

Anti-caking vs. Hydrophobic Performance Compromise Patent EP 702999

Fertilizer Problems that Coatings Cannot Solve

•Problems specific to the granule itself cannot be solved by coatings, such as:

- Poor hardness
- Bad size distribution

- Irregular shape, rough surface
- Poor plant efficiency or yield
- High moisture content

The Role of Process Additives

•Process additives can often help to improve physical characteristics or yield

•Where a process additive is successful, often several parameters can be improved at the same time

•Older plants can improve the process without capital expenditure

•Process additives are very specific to a particular process

Examples of Current Additives

•Formaldehyde (UF85) for urea hardening

- •Inorganics in ammonium nitrate (AN)
- Magnesium nitrate
- Ammonium or Aluminum sulfate
- Permalene
- Clays

•Lignosulfonate used as a binder and granulation aid in DAP production

Examples of Current Additives 2

•Nufarm's Galoryl AT for industrial-grade AN (Kaltenbach-Thuring process)
•Nufarm's Galoryl GR for fluidized-bed granulation and fattening
•Clay for use in granulation of fines (AJ Sackett patent no)

Drum Granulation of HDAN

•A new Nufarm Galoryl GR product is in commercial use for drum granulation of high-density ammonium nitrate

- •Benefits include:
- Improved hardness
- Greatly reduced recycle, better size distribution
- Much more spherical and smooth granules
- Lower moisture content

<u>Nitrate</u>
<u>Ammonium</u>
h-Density /
for Hig
<u>Additives</u>
yl GR
<u>Galor</u>

Results from production of granular HDAN using Galoryl GR

	in firms firms	
Parameter (Plant no. 1	No GR	With GR
production)		
Size on +8 mesh, % (see note 1)	57	80
Impact hardness test, %	89	25
breakage		
Hardness, crush test, Ib	4	6.5
Sphericity test, % (see note 2)	82	88
Product moisture, %	0.09	0.06

Parameter (from plant trial,	No GR	With GR
Plant no. ∠) Average hardness, crush test,	3.6	6.4
Э. О.		
Impact hardness test, %	5.8	0.0
breakage		

Results from production of prilled HDAN

Parameter (Plant 3 trial)	With	With GR 210
Friability index, % (5%	3.5	2.5
Fines, %	0.2	0.03

Process Additive Implementation

•Process additives are very specific and can be difficult to implement:

- The producer should have good, experienced technical assistance from the supplier
- Supplier and producer must work together as partners, with careful consideration
- Initial application cannot be done haphazardly, as this could break granulation

Future Developments

•The Nufarm Group will continue granulation additives development. Anticipated future applications include:

- Shape modifiers for DAP and MAP
- Granulation aids for NPK
- Hardeners and shape modifiers for urea
- Granulation additive for industrial-grade AN