

IFA Technical Conference

New Orleans, Louisiana, USA 1-4 October 2000

The Abu Qir Fertilizer Experience in Conservation and Recycling of the Water In Two Sites: -A - Cooling Water System. B - Production of Demineralized Water for Steam Generation

Samir El-Salahy*, Fatma H. Badawy**, Abdel Rahman M.*** Abu Qir Fertilizers & Chem. Ind. Co., Egypt

Abu Qir Fertilizers Company est un des plus grands complexes de productions d'engrais azotés au Moyen Orient. Elle a été constituée en 1975 comme société à capital commun. Cette société compte trois unités produisant journellement 6 000 t. Les données de chacune des unités sont résumées au tableau 1. Abu Qir Fertilizer domine le marché domestique avec 70% de part de marché et, en plus, a un vaste potentiel d'exportation sur le marché international.

Unites	d'Abu Qir I, II, III
Unité l Abu Qir	
Unité d'ammoniac	1 100 t/j
Unité d'urée	1 550 t/j
Sites d'implantation et utilités	
Licence de procédé	Ammoniac Krupp Uhde
	Stamicarbon – Urée
Produit	Urée prillée 46.5% N
Date de démarrage	1979
Unité II Abu Qir	4 000 1/5
Unité d'ammoniac	1 000 t/j
Unité d'acide nitrique	1 800 t/j
Nitrate d'ammonium	2 400 t/j
Licence de procédé	Krupp Uhde
Dreduit	Hydro Agri
Produit	Formule d'engrais AN 33.5% N
Date de démarrage	Juillet 1991
Unité III Abu Qir	
Unité d'ammoniac	1 200 t/j
Unité d'urée	2 000 t/j
Licence de procédé	Krupp Ühde
	Stamicarbon
	Hydro Agri
Produit	Urée granulée 46.5% N
Date de démarrage	Janvier 1999

Tableau 1 Unités d'Abu Qir I, II, III

Le traitement de l'eau a un rôle important pour approvisionner les unités en eau de refroidissement et pour alimenter les chaudières par la génération de vapeur.

Dans cet exposé on présentera l'expérience d'Abu Qir dans le recyclage, le réemploi et la conservation de l'eau dans 2 sites.

Introduction

The Abu Qir Fertilizers Company has one of the largest nitrogen fertilizer production complexes in the Middle East. It was established in 1975 as a joint stock company. The Company comprises of three plants producing a total daily output of 6.000 mt. Data for each of the process plants are summarized in Table 1. Abu Qir Fertilizer dominates the domestic market with a share of 70% and in addition has vast export potential to international markets.

Table 1 <i>Abu Qir</i> plants : I, II and III			
Abu Qir Plant I			
Ammonia output	1,100 mtpd		
Urea output	1,550 mtpd		
Offsites and Utilities			
Process licensors	Krupp Uhde-Ammonia		
	Stamicarbon – Urea		
Product	Prilled urea , 46.5 % N		
Date onstream	1979		
Abu Qir Plant II			
Ammonia ouput	1,000 mtpd		
Nitric acid output	1,800 mtpd		
Ammonium nitrate	2,400 mtpd		
Process licensors	Krupp Uhde		
	Hydro Agri		
Product	Fertilizer grade AN , 33.5 % N		
Date onstream	July 1991		
Abu Qir Plant III			
Ammonia plant output	1,200 mtpd		
Urea plant output	2,000 mtpd		
Process licensors	Krupp Uhde		
	Stamicarbon		
Draduat	Hydro Agri		
Product	Granulated urea , 46.5 % N		
Date onstream	January 1999		

The water treatment has an important role for supplying the process units with cooling water and boiler feed water for steam generation .

In this paper we will explain Abu Qir's experience in recycling, reusing and conservation of the water in two sites :

- 1st) The cooling system
- 2nd) The production of demineralized water for steam generation

Water Treatment at Abu Qir 1 Plant

The System:

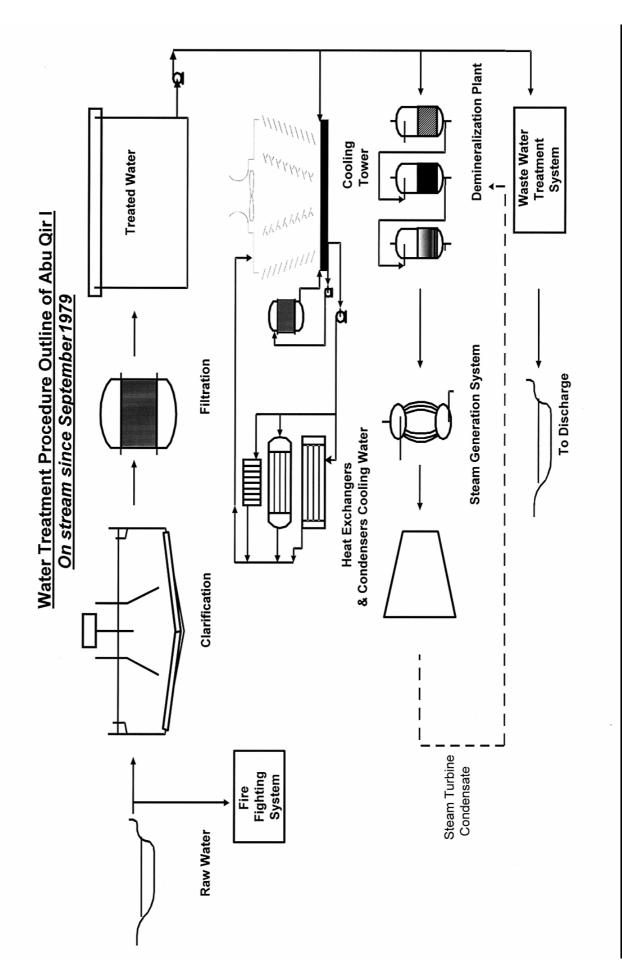
1 - Feed water system for steam generation

The total high purity water consumption is about 320 M³/hr, of which 50% is polished turbine condensate return and the other 50% demineralized water from water treatment unit. As the total dissolved solids (TDS) increases, the cost production of demineralized water increases. In 1993, the modernization project was implemented when a new EDR unit was built, after economic and technical studies were carried out with respect to environmental issues.

2 - The cooling water system

The cooling water system is subdivided into three sections for supplying both ammonia and urea plant by cooling water :

A) Induced-draught cross flow cooling tower of wood and pump station.


- B) Side stream filtration.
- C) Chemical treatment.

Design data for cooling tower:

Circulation rate	20000 M ³ /hr
Make up water	650 M ³ /hr
Blow down	350 M ³ /hr
Conc. Factor	1.5 - 2 max cl ⁻ 110 mg/l
Temp. diff. " Δt "	10 °C

Ion-exchange operating cost before and after using of E.D.R. unit at TDS 450 ppm :

Items	Consumption of demin. unit	
	Before E.D.R.	After E.D.R.
1 - HCI 30% Conc. t/y	3693	1575
2 - NaOH 50% Conc. t/y	2209.2	925.5
2 Droductivity of domin Lipit $M^{3/y}$	1663389	1533033
3 - Productivity of demin. Unit M^{3}/hr	192	177
4 - Operating hours / cycle	Max 18	Max 50
5 - Quantity of reg. Water $M^{3/y}$	280320	148920
6 - Saving cost %	Cost decreased by 50 %	
7 - Saving of quantity of reg. %	Reg. Qty. decreased by 46 %	
8 - Operating hours %	Increased by 177 %	

Water treatment at Abu Qir 2 Plant

1 - Feed water system for steam generation

The demineralization unit is designed to produce 300 M³/hr demineralized water for steam generation.

The production of demineralized water is based on

- 1st) Turbine condensate 60 %.
- 2nd) Process condensate from NH_3 (I + II) plants 20 %.
- 3rd) Treated water 20 %.

The steam and turbine condensates are purified in cartridge filters, the process condensate after stripping unit is purified in activated carbon filters and the raw water which treated in the clarifier by using $Ca(OH)_2$, $Al_2(SO_4)_3$, $KMnO_4$ and P.E and filtered in the gravel filters.All streams A, B and C are mixed and fed to the cation and anion and then to the mixed bed exchangers for fine treatment which operated in a counter current flow with fluidized bed design.

Saving Gain

By reuse of process and turbine condensates:

- 1 minimize the treated water used.
- 2 economic cost of the production of demineralized water.

2 - The cooling water system

The cooling water system consists of two separate cooling towers (cross flow designed):

- a) The first supplies the nitric acid and ammonium nitrate plants by cooling water.
- b) The second supplies the ammonia plant by the cooling water.

For normal operation both cooling towers operated together at different concentration:

- * Conc. factor of nitric acid cooling tower = 1.5 " max. Cl⁻ 120 mg/l ".
- * Conc. factor of NH_3 cooling tower = 3.5 at "max. Cl⁻ 300 mg/l".

Each cooling tower system is subdivided into the following three sections:

- 1 Induced-draught cross flow cooling tower with pump station.
- 2 Side stream filtration.
- 3 Chemical treatment.

Saving gain:

- 1 Minimize the treated water used by using blow down from Tower I as a makeup water for Tower II.
- 2 Economic cost for the cooling water treatment.

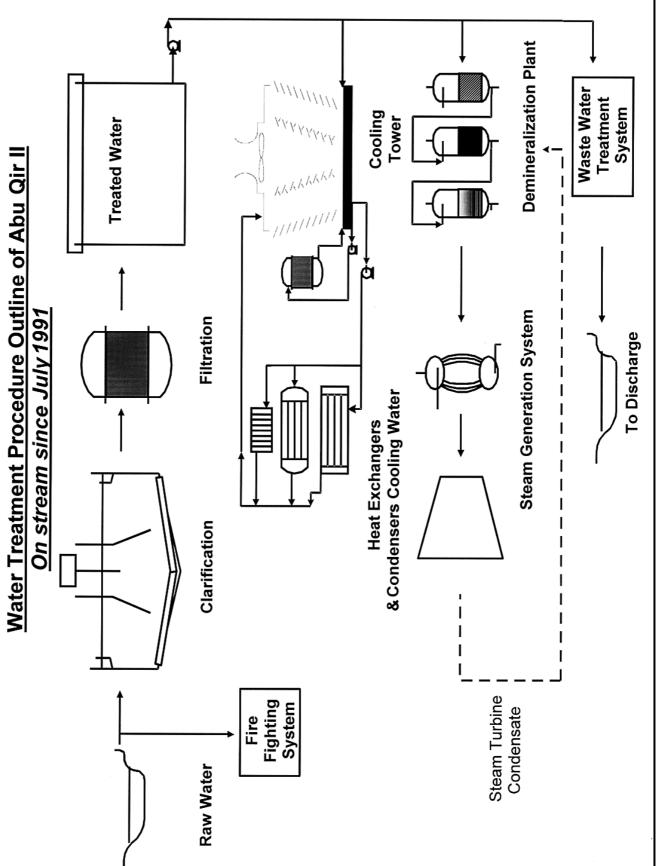
11		
Item	HNO ₃ & AN Plant	NH₃ Plant
Circulation rate	12700 M ³ /hr	13700 M ³ /hr
Make up water	515 M ³ /hr	318 M ³ /hr
Blow down	315 M ³ /hr	115 M ³ /hr
Conc. Factor	1.5	2.5 - 3
Temp. diff. "Δt"	10 ° C	10 ° C
Mat. Of Construction		
1- Heat Exchanger	1) St. St.	1) St. St.
_	2) Carbon St.	1.4593 & 1.4539
	ST. 35.8	2) Titanium
2 - Piping Material	Carbon St.	Carbon St.
	ST. 35.8	ST. 35.8

Design data for cooling towers:

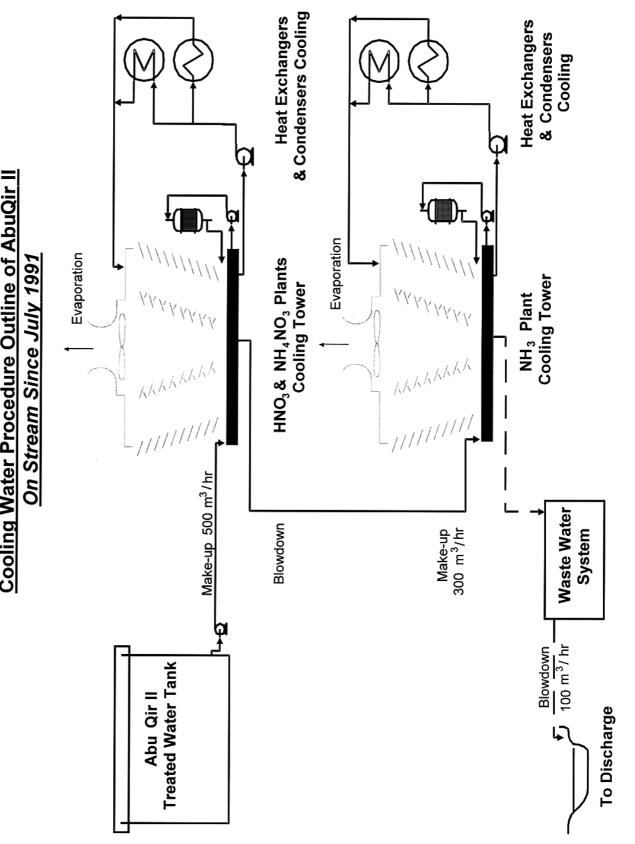
<u>Cooling Water System for ABU QIR 2</u> <u>The Makeup Water M³/year during 2 Cases and % Saving</u> :

- 1 When using the blow down water from first cooling tower as makeup water to the second cooling tower beside treated water.
- 2 When using only treated water as makeup.

	Makeup Water M ³ /hr		Treated Water
	Treated Water Blow Down		M ³ /year
Case I	500	300	3960000
Case II	750	-	5940000
Saving	250	-	1980000

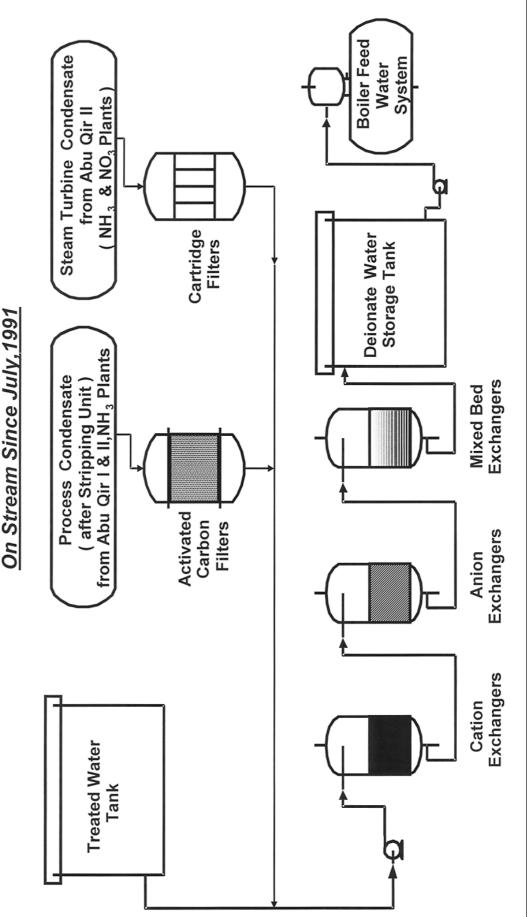

	% Saving
Treated Water	33.3
Chemical Cost	35.7

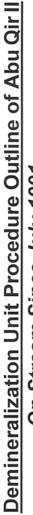
Demineralization Unit for ABU QIR 2 The Demineralized Water M³/year during 2 Cases and % Saving:


1 - Production of demineralized water from {(turbine cond. + process cond.) + treated water}.2 - Production of demineralized water from (turbine cond. + treated water).

	Turbine	Process	Treated	Total	Treated Water
	M ³ /hr	M ³ /hr	M ³ /hr	M ³ /hr	M ³ /year
Case I	176	40	90	306	712800
Case II	176	-	130	306	1029600
Saving	-	-	40	_	316800

	% Saving
Treated Water	30.8
Chemical Cost	8.4




 \sim

Cooling Water Procedure Outline of AbuQir II

ω

တ

Water treatment at Abu Qir 3 Plant

1 - Feed water system for steam generation

The demineralization unit is designed to produce 340 M³/hr demineralized water for steam generation.

The production of demineralized water is based on

- a) Turbine condensate 51.4 %.
- b) Process condensate from NH₃ (I + III) 33.8 %.
- c) Treated water 14.7 %.

The operation and the process units of demineralization plant similar to Abu Qir II.

2 - The cooling water system

The cooling water system consists of two separate cooling towers:

- a) The first supplies the urea plant by the cooling water.
- b) The second supplies the NH_3 plant by the cooling water.

Each cooling tower system is subdivided into the following three sections:

- 1 Induced draught cross flow cooling tower with pump station.
- 2 Side stream filtration.
- 3 Chemical treatment.

Saving gain

1 - Minimize the treated water used as a makeup water by using a different source of reused water as a makeup "Total Makeup = $475 \text{ M}^3/\text{hr}$ ".

- a) The reuse of urea process condensate after treatment by urea hydrolyzer as a makeup to the urea cooling tower " 75 M³/hr ".
- b) The reuse of blow down from urea cooling tower as a makeup to the NH_3 cooling tower " $100M^3/hr$ ".
- c) The reuse of blow down from Abu Qir I cooling tower as a makeup to the $\rm NH_3$ cooling tower " 300 $\rm M^3/hr$ ".

2 - Economic cost for the cooling water treatment.

<u>Cooling Water System for ABU QIR 3</u> <u>The Makeup Water M³/year during 2 Cases and % Saving</u> :

- 1 When using different sources as makeup water [Blow down & treated urea process condensate] beside treated water.
- 2 When using only treated water as makeup.

	Makeup Water M ³ /hr		Treated Water
	Treated Water Blow Down + urea cond.		M³/year
Case I	110 475		871200
Case II	585 -		4633200
Saving	475	475 -	

	% Saving
Treated Water	81.2
Chemical Cost	50.1

Demineralization Unit for ABU QIR 3 The Demineralized Water M³/year during 2 Cases and % Saving:

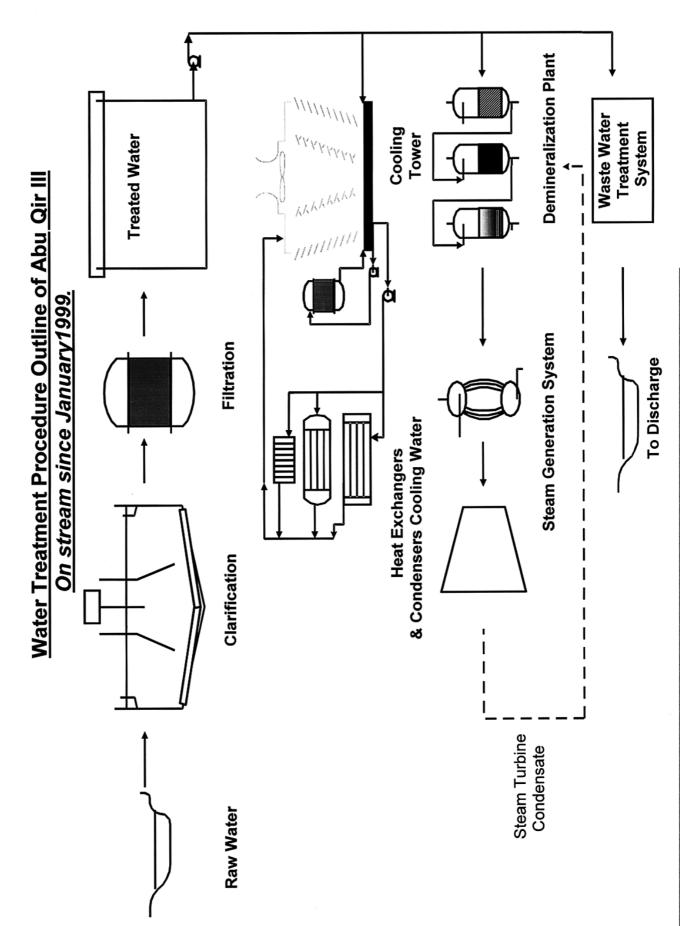
1 - Production of demineralized water from {(turbine cond. + process cond.) + treated water}.

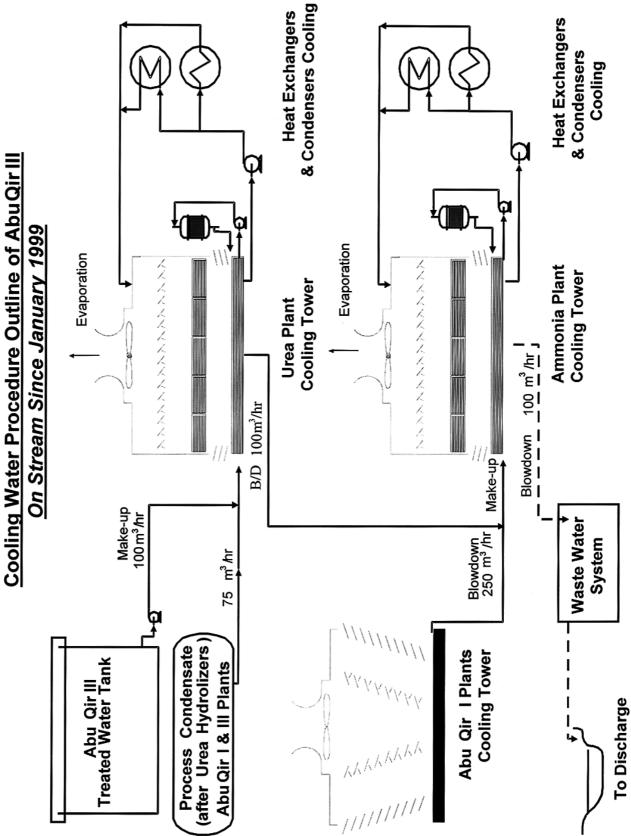
2 - Production of demineralized water from (turbine cond. + treated water).

	Turbine	Process	Treat. Wat.	Tot. Prod.	Treated Water
	M ³ /hr	M ³ /hr	M ³ /hr	M ³ /hr	M ³ /year
Case I	175	115	50	340	396000
Case II	175	-	165	340	1306800
Saving	-	-	115	-	910800

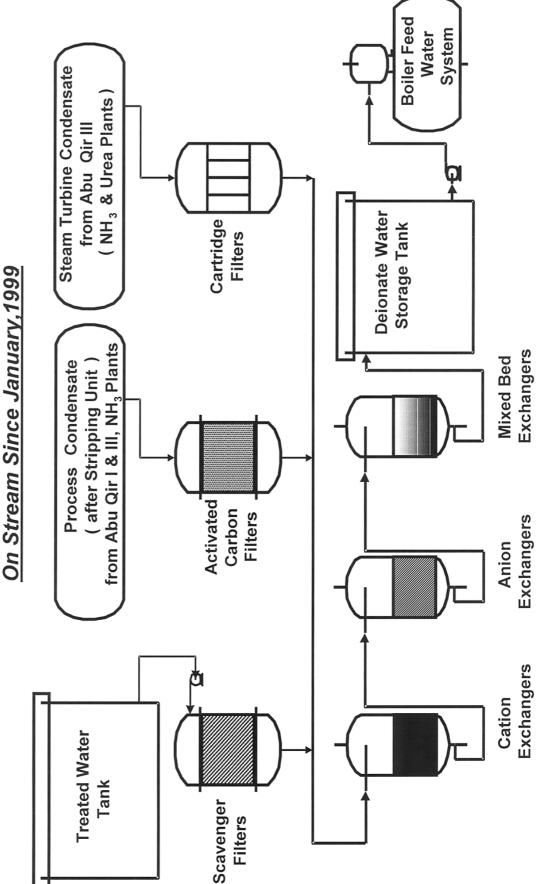
	% Saving	
Treated Water	r 69.7	
Chemical Cost	48.6	

	Abu Qir I	Abu Qir II	Abu Qir III	
	Prilled urea 46.5% N	Granulated AN 33.5% N	Granulated urea 46.5% N	
Date on stream	September, 1979	July, 1991	January, 1999	
production	536000 ton/year	800000 ton/year	600000 ton/year	
The uses of				
treated water				
I - as a makeup	650 M ³ /hr	500 M ³ /hr	110 M ³ /hr	
II - for demin unit	170 M ³ /hr	90 M ³ /hr	50 M ³ /hr	
Total treated	820 M ³ /hr	590 M ³ /hr	160 M ³ /hr	
water consumption	6494400 M ³ /year	4672800 M ³ /year	1967200 M³/year	
<u>% of saving</u>				
I - treated water	-	27.6 %	80 %	
II - chemical cost	-	18.6 %	51.8 %	

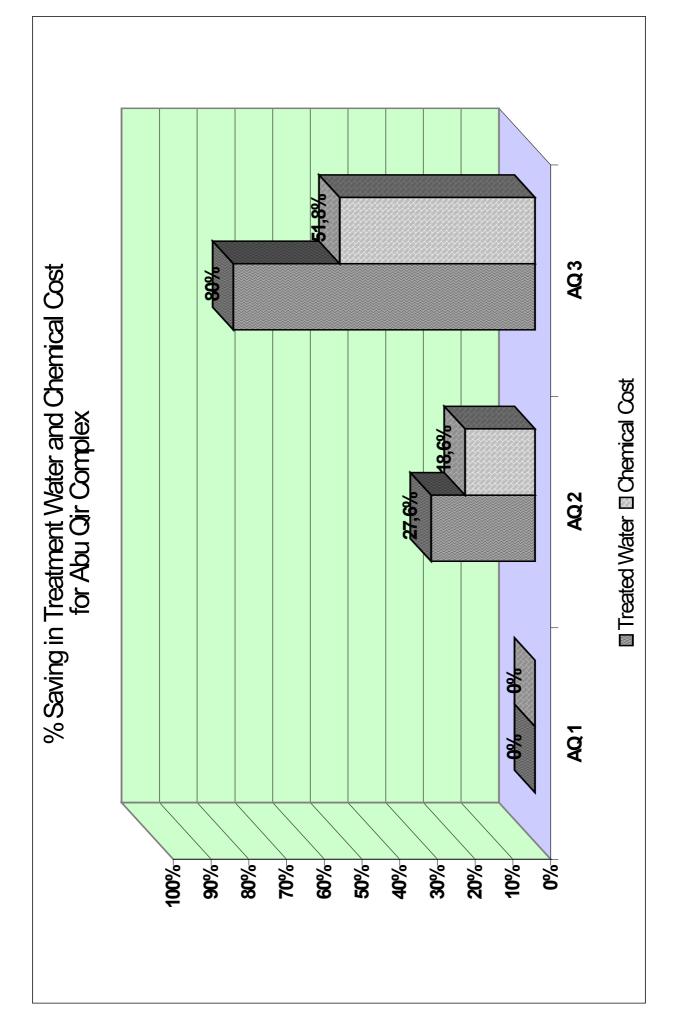

The final evaluation of the optimum water resources and chemical consumption Abu Qir complex


Conclusion:

The development process in the three plants in Abu Qir complex, as opposed to traditional techniques of choosing the optimal process for reusing each source of water to meet process need, depends on reuse and recycling of the cooling water blow down and process condensate.


This led to:

- 1 Minimize the fresh water quantity used:
 - by 27.6 % at Abu Qir II.
 - by 80.0 % at Abu Qir III.
- 2 Decreasing the chemical consumption which will minimize the total cost of cubic meter of water:
 - by 18.6 % at Abu Qir II
 - by 51.8 % at Abu Qir III.
- 3 Providing an improvement in environment profile by eliminating the potential contamination



Water Procedu

