Enhancing the efficiency of fertilizers

Slow or controlled release fertilizers

Delays the availability of a nutrient for plant uptake or extends its availability to the plant longer than ‘rapidly available nutrient fertilizers’

- Slow release – nutrient release pattern is fully dependant on soil and climatic conditions and cannot be predicted
- Controlled release – release pattern, quantity and time can be predicted within certain limits
Slow and Controlled Release Fertilizers

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic-N low solubility compounds</td>
<td>Condensation products of urea-aldehydes (slow-release)</td>
<td>Urea-formaldehyde (UF) Isobutyldiene-diurea (IBDU) Cyclo-diurea/ Crotonylidene diurea (CDU)</td>
</tr>
<tr>
<td>Physical barrier - coated/encapsulated</td>
<td>Organic polymer coatings (thermoplastic or resins) Matrices can be hydrophobic (e.g. polyolefins, rubber etc) or hydrophilic (hydrogels)</td>
<td>Polymer coated sulphur-coated urea (PSCU) Polymer coated urea (PCU) Sulphur-coated urea (SCU) Polyolefin coated urea (e.g. Meister®) and coated NPK(+) compounds (e.g. Nutricote®)</td>
</tr>
<tr>
<td>Inorganic low-solubility compounds</td>
<td>Slow release</td>
<td>Eg. Metal ammonium phosphates (struvites), partially acidulated phosphate rock</td>
</tr>
</tbody>
</table>

Advantages
- N release rate matches crop demand
- Increases nitrogen use efficiency
- Reduces N loss to the environment
- Reduces number of applications/rates/ labour saving

Disadvantages
- Synchronizing nutrient release to plant need
- High cost per unit N compared to conventional fertilizers
- ‘Burst’, damaged granules
- Residues of synthetic material in soil

Use
- Limited use < 0.20 – 0.47% of total world fertilizer consumption (Trenkel, 2010)
- High cost compared to conventional fertilizers has limited their use to niche non-agricultural markets
- They are cost-effective for high-value crops
- Recent increase in use due to increased production capacity for SCU in China, and development of new PCU fertilisers (e.g. Environmentally Smart Nitrogen by Agrium) for agricultural crops in USA (profitable in field crops like maize, rice, wheat & potatoes)
Stabilised N fertilizers

Extends the time the N component of the fertilizer remains in the soil in the urea or ammoniacal form

- Urease inhibitors (inhibit hydrolytic action of urease enzyme on urea)
 \[\text{CO(NH}_2\text{)}_2 + \text{H}^+ + 2\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + \text{HCO}_3^- \]

- Nitrification inhibitors (inhibit the biological oxidation of \(\text{NH}_4^+ \) to \(\text{NO}_3^- \))

\[
\begin{align*}
\text{NH}_3 \xrightarrow{\text{Ammonia oxidase}} & \text{NH}_2\text{OH} \xrightarrow{\text{Nitrosomonas}} \text{NO}_2^- \xrightarrow{\text{Nitrobacter}} \text{NO}_3^- \\
\text{Nitrification Inhibitors} & & & & & & & & & & & \\
\end{align*}
\]

Requirements for successful inhibitors

- Non toxic
- Stable during production, storage and use
- Effective at low concentrations
- Inexpensive
- Compatible with urea or ammoniacal N

Many compounds have been tested but few meet these requirements and are commercially available.
nBTPT is the most widely used commercially available urease inhibitor

- Tradename is AGROTAIN®
- Supplied in liquid form (green solvent containing 20 - 25% nBTPT) or as a powder (60% nBTPT)

This can be:
- Used to coat urea granules
- Added to the urea melt during manufacture
- Added to UAN solutions prior to surface spreading in the field

Amended urea and AN in same category for retained N

NT2605: 16 field sites over the UK

DEFRA 2006
Grain N (%) and grain N offtake (kg N/ha) of winter and spring cereals in UK

Winter cereals (mean of 7 sites)

<table>
<thead>
<tr>
<th>Grain N (%)</th>
<th>AN</th>
<th>U rea</th>
<th>U +Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring cereals (mean of 6 sites)

<table>
<thead>
<tr>
<th>Grain N (%)</th>
<th>AN</th>
<th>U rea</th>
<th>U +Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEFRA 2006

GHG intensities of wheat grown with AN, urea or treated urea (kg CO₂eq / tonne grain)

Average European Technology

Best Available Technology

Sylvester-Bradley et al., 2012
GHG emissions from urea and CAN fertilizer production (using BAT) and use (kg CO₂eq/kg N)

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Rate</th>
<th>Relative volatility</th>
<th>Solubility in water</th>
<th>Mode of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrapyrin/</td>
<td>1-2 mg/kg</td>
<td>High (Corrosive)</td>
<td>Low</td>
<td>Suitable with anhydrous ammonia with injection into soil</td>
</tr>
<tr>
<td>N-serve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCD</td>
<td>20 mg/kg (10 kg/ha)</td>
<td>Low</td>
<td>High</td>
<td>Use in solid, liquid fertilisers & slurry</td>
</tr>
<tr>
<td>DMPP</td>
<td>0.5–1.5 kg/ha</td>
<td>Low</td>
<td>Low</td>
<td>Use in solid, liquid fertilisers & slurry</td>
</tr>
</tbody>
</table>
Quantified with a 15N tracing model which considers six nitrogen pools and 12 nitrogen transformations

15N tracing model (Müller et al., 2007)

Reduction in gross nitrification rates

DCD applied to cattle slurry

15N Tracing Model Results

McGeough et al., 2012
Reduction in nitrate leaching

Hydrologically isolated grazed dairy pastures in New Zealand

Source: Monaghan et al., 2009

Reduction in N$_2$O emission factors

Hillsborough site (2011/12 season)

Research funded by DEFRA and DARD as part of AC0116

McGeough et al., 2012
Urea is significantly lower (P<0.01, LSD=26 kg N ha⁻¹)

% Inhibition in rate of nitrate production
Economics of Agrotain amended urea vs CAN

Additional cost of amending urea is US$50 per t

Current price differential between urea and AN/CAN in UK makes amended urea cost effective, if DM yields are comparable

Koch Fertiliser Ltd are the main distributors of Agrotain treated urea

Amended urea is a viable alternative to AN/CAN

Economics of nitrification inhibitors

A cost benefit analysis is difficult due to fluctuations in the price of standard fertilizers, the target crops and the marketing strategies of national/local sales departments (e.g. high volume or high market share)

Subbarao et al. (2006) estimated the cost of nitrapyrin or DCD to be ~ US$ 25-35/ha. DCD including spreading costs in NZ = €120 /ha

To be economic the long-term average losses must exceed 40-50 kg N/ha

To be more widely accepted for use with agricultural crops, they will need to be priced competitively
Conclusions

- SRF/CRFs and stabilised fertilizers can increase plant growth, reduce N losses and reduce GHG intensities
- Variable effects are due to crop, soil properties, climatic and management factors
- Urease inhibitors are likely to be most beneficial on soils where loss of NH$_3$ from urea fertiliser is high. Amended urea could be an alternative to AN/CAN under wet conditions
- Nitrification inhibitors likely to have greatest benefit on soils where N losses (leaching or N$_2$O emissions) are large
- The development and commercialisation of new, effective, low cost and non toxic fertilizer formulations is a time-consuming process
- For SRF/CRFs and stabilised fertilizers to be more widely accepted for use in agriculture they need to be cost effective

As producers begin to understand the multiple benefits of SRF/CRF and stabilised fertilizers in crop production (yield increases, improved crop quality, management flexibility and reduced environmental losses) there should be increased interest in their use, particularly if C credits for reduced GHGs can be used to offset costs

Thank you for listening