The Uhde Pugmill Granulation

The Process for Safe and Reliable Production of CAN and other AN Based Fertilisers

By Peter Kamermann and Axel Erben, Uhde GmbH, Germany
Prepared for Presentation at the 2006 IFA Technical Symposium
Vilnius, Lithuania, April 25 - 28, 2006

Agenda

- Safety considerations in AN and CAN production
- The effect of limestone/dolomite on CAN safety
- Common AN/CAN Granulation Processes
- The Uhde Pugmill Granulation Process
- Further Improvement of the Uhde Pugmill Granulation
- Conclusion
Why should we produce CAN?

- AN as fertiliser has practically more or less been banned due to strict transport and storage regulations (in the EU and USA)
- Ammonium nitrate fertilisers with ≤ 80% AN (=28%N) are considered to be safe by EU regulations (Class C fertiliser)
- The limestone/dolomite adjusts the pH value in the fertiliser and the soil (useful in many though not all soil types)
- CAN typically has better physical properties (e.g. hardness of granules)

Safety Considerations in AN and CAN Production

Decomposition of Ammonium Nitrate

by

- high temperature
- contamination
- (heating under) confinement

- chlorides
- metal ions (e.g. Cu, Zn, Cr)
- organic (combustible) carbon
- nitric acid (pH)

- feedstock
- granulation additives
- recycle of offspecs
- self-acidification
The Effect of Limestone/Dolomite on CAN Safety

The Stabilising Effect of Limestone/Dolomite

The different kinds of limestone consist to almost 100% of
- Calcium carbonate CaCO_3 and
- Magnesium carbonate MgCO_3

The stabilising effect results from the following reactions:
- $2 \text{HNO}_3 + \text{CaCO}_3 \Rightarrow \text{Ca(NO}_3)_2 + \text{H}_2\text{O} + \text{CO}_2$
- $2 \text{HNO}_3 + \text{MgCO}_3 \Rightarrow \text{Mg(NO}_3)_2 + \text{H}_2\text{O} + \text{CO}_2$

Reactivity of Limestone/Dolomite

Reactivity is the measure, how much of the carbonates is converted into their nitrates:
$\text{CaCO}_3 \Rightarrow \text{Ca(NO}_3)_2$ and $\text{MgCO}_3 \Rightarrow \text{Mg(NO}_3)_2$
The Effect of Limestone/Dolomite on CAN Safety

pH Stabilisation by Limestone/Dolomite

The rate of reaction can be influenced by:
- pH of granules
- filler type
- drying and grinding conditions for the filler
- granulation temperature
- product moisture
Common AN/CAN Granulation Processes

High solid recycle processes ($R \geq 1.5$), e.g.

- Pugmill
- Spherodizer
- Drum

and low solid recycle processes ($R \leq 1$):

- Fluidised bed
- Pan
- Fluidised Drum

Granulation and recycle System

The Uhde Pugmill Granulation Process

Process Units

- Granulation and recycle System
- Combined cooling / drying air system
- Process air treatment
- Process water recycle and evaporation
- Wet cleaning system
The Uhde Pugmill Granulation Process

Granulation and Recycle System

- Filler / Additive
- AN melt
- Granulator
- Screens
- Lump crusher
- 2-Roller-crusher
- Cyclones
- Fluid-bed cooler
- Drying drum
- Cyclones
- Coating drum
- Final product

AN melt
Filler / Additive

The Uhde Pugmill Granulation Process

Combined Cooling / Drying Air System

- Waste gas
- Fluid-bed cooler
- LP steam & condensate
- Drying drum
- Air conditioning unit
The Uhde Pugmill Granulation Process

Design and Operating Characteristics (1)

Uhde considers the pugmill to be best-suited for CAN production:

Flexibility:
- full range of N content from below 22 to 33.5%N, no downtime necessary in between product types
- tolerance regarding filler materials from nitrophosphate lime to dolomite (and gypsum); filler materials and additives can be added as dry matter without premixing

Inherent safety:
- low melt temperature (< 160°C), low melt concentration (95-96%), low granulation temperature (< 120°C)
- no need for filler/additive pre-mixing in hot concentrated melt

Process stability: high recycle makes plant self-regulatory, disturbances are balanced out

Product quality: hard and uniform product without seed preparation systems or scalping screens
The Uhde Pugmill Granulation Process

Design and Operating Characteristics (2)

- **Maintainability:**
 - no melt spraying system, therefore no wear in liquid system
 - minimum amount of proprietary equipment, locally produced spare parts

- **Energy efficiency:** autothermal (or near autothermal) CAN production; relatively low energy consumption

- **Environmental:**
 - dual use of cooling/drying air, minimising waste air flows
 - wet scrubbers reduce effluents well below BAT (‘Best Available Technique’) levels; no AN aerosols are produced
 - no liquid effluents, wash water is collected and recycled (except for floor spillages)

- **Cost efficient:** total plant cost comparable with or lower than for other granulation processes

Further Improvement of the Uhde Pugmill Granulation

Research and Development

- **Dolomite and Limestone Assessment**
 - reproducible extensive testing
 - evaluation of granulation behaviour

- **Granulation Additives**
 - Stabilisation for thermocycling

- **Control of Filler Reactivity**
 - adjustable premixing of AN melt and filler

- **Fertilisers with Sulphur Content**
 - Granulation with Gypsum/Anhydrite
 - Granulation plant extendable for ASN production
Conclusion

The Uhde Pugmill is the ideal Granulation Process for CAN because

- of its capability to produce the whole range of N-content
- it is tolerant regarding filler material and additives
- of its high degree of safety also compared to low recycle processes
- of the high product quality
- emissions are well below BAT-level
- investment, energy and maintenance costs are reasonably low