GRANDE PAROISSE

Integrated production of Nitric Acid and Ammonium Nitrate: GP experience
Granger Jean-François

Vilnius, Lithuania,
April 26th, 2006

1. INTRODUCTION
2. GP NITRIC ACID PROCESS DESCRIPTION
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION
4. INTEGRATION
5. CONCLUSION.
1. INTRODUCTION

GP developed in the 1950’s the technology of Nitric Acid production by dual pressure process and later on by mono pressure process.

Continuous improvements have concerned:
- efficiency (both regarding Ammonia consumption and energy)
- environment,
- safety.

1. INTRODUCTION

GP developed in the 1980’s the technology of Pipe Reactor for ANS production.

Continuous improvements have concerned:
- flexibility of operation,
- environment,
- safety.
1. INTRODUCTION

GP made more than 10 years ago some developments in both processes in order to
- minimize investment cost
- maximize energy recovery
- minimize emissions

through process integration.

Capacity of the case:
- Nitric Acid plant 500 MTPD
- Ammonium Nitrate solution plant 635 MTPD

2. GP NITRIC ACID PROCESS DESCRIPTION

Capacity range
- First Nitric Acid plant designed by GP (1958) Frais Marais (France) capacity 160 MTPD.
- Largest one (1986) Yara Sluiskil site (The Netherlands) 2000 MTPD.

72 plants have been designed
2. GP NITRIC ACID PROCESS DESCRIPTION

Mono Pressure Process

Air Compression
- Atmospheric air is
 - filtered
 - compressed
 - divided into primary air and secondary air
- Primary air is sent to air-ammonia mixer.
- Secondary air is
 - cooled by pre-heating tail gas
 - used for bleaching the product acid.

IFA, April 2006
2. GP NITRIC ACID PROCESS DESCRIPTION

- Mono Pressure Process
- Air Compression
- Ammonia supply
 - Ammonia Evaporation and Pressure Control
 - Ammonia Superheating
 - Air-Ammonia Ratio Control

Ammonia Oxidation
- Air-ammonia mixture is introduced into the ammonia burner
- Ammonia combustion temperature is about 900°C
- Main reaction produces NO
- Side reactions also take place
- GP is integrating N₂O abatement technology in its design.
2. GP NITRIC ACID PROCESS DESCRIPTION

- Mono Pressure Process
- Air Compression
- Ammonia supply
- Ammonia Oxidation
- Heat Recovery on NO\textsubscript{x} Gas
- Acid Production by NO\textsubscript{x} Gas Absorption
 - Process water is fed on the upper tray of absorber.
 - NO\textsubscript{x} content in tail gas is lower than 600 ppm.
 - The nitric acid produced in the absorber contains a large amount of NOx gases in solution that colors the acid.
 - The secondary air eliminates dissolved NOx gases by stripping in the bleacher
2. GP NITRIC ACID PROCESS DESCRIPTION

- Mono Pressure Process
- Air Compression
- Ammonia supply
- Ammonia Oxidation
- Heat Recovery on NO\textsubscript{x} Gas
- Acid Production by NO\textsubscript{x} Gas Absorption
- Tail Gas Heating
 - To maximize recovery of energy through tail gas expander is heated in the following exchangers:
 - Secondary air cooler
 - Tail gas preheater by cross exchange with LP steam.
 - Tail gas heater by cross exchange with NO\textsubscript{x} Gas from the boiler / conveter.

Selective Catalytic Reduction
- Hot tail gas is injected into a NO\textsubscript{x} abatement reactor
- At the outlet, NO\textsubscript{x} content < 150 ppm.
- With special design and operating conditions < 50 ppm achieved
2. GP NITRIC ACID PROCESS DESCRIPTION

- Mono Pressure Process
- Air Compression
- Ammonia supply
- Ammonia Oxidation
- Heat Recovery on NOx Gas
- Acid Production by NOx Gas Absorption
- Tail Gas Heating
- Selective Catalytic Reduction
- Tail Gas Expander
- High Pressure (HP) steam
 - produced in waste heat boiler system.
 - A part is superheated in superheater and sent to the steam turbine.
 - The remainder is sent to battery limits as export steam.

GRAINDE PAROISSE

IFA, April 2006
2. GP NITRIC ACID PROCESS DESCRIPTION

Dual Pressure Process

- Water
- Superheater
- Steam Drum
- Burner
- Mixer
- Filter
- Waste Heat Boiler
- Filter
- Tail Gas Preheater
- Secondary Air Cooler
- Tail Gas Heater
- Condenser
- Expander
- Air Compressor
- DeNOx Reactor
- Absorption Tower
- Bleaching Tower
- Ammonia
- Air Nitric Acid
- Stack
- Export Steam

3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

GP developed in the 1980’s the technology of Pipe Reactor for ANS production.

Capacity range

- The first Pipe Reactor was installed in a Grande Paroisse plant at Mazingarbe with a capacity of 250 MTPD.
- The largest one installed in 1993 in DSM Geleen (The Netherlands) has a present capacity of 2000 MTPD.

Continuous improvements have concerned

- flexibility of operation,
- environment,
- safety.
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

Difficulties with conventional processes:
- Operating conditions of the neutralizer (P, T, ANS Concentration) are dependant on boiling properties of the ANS

![Graph showing pressure in atm as a function of ANS concentration in %w/w at different temperatures (60°C, 120°C, 140°C, 160°C, 180°C, 190°C).]

3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

GP Pipe Reactor process:
- HNO₃
- NH₃
- Condensation
- Process steam purification
- Mixing
- Heating
- Vaporization Superheating
- Reaction
- Separation
- Condensate
- NH₄NO₃ production
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

GP Pipe Reactor process:

![Graph showing ANS concentration %w/w as a function of Nitric acid concentration %w/w at 40°C, 60°C, and 80°C.](image)

3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

GP Pipe Reactor process:

![Graph showing NH₃ and HNO₃ concentration over time.](image)
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

Water balance issue

Possible treatments of the process steam
- Filter candles
- Scrubbing column
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

Possible treatments of the process steam
- Filter candles
 - First treatment
 - low velocity (1 m/s)
 - PTFE fibers
3. GP AMMONIUM NITRATE PROCESS DESCRIPTION

Possible treatments of the process steam
- Filter candles
- Scrubbing column
- Entropie® System

3. GP AMMONIUM NITRATE PROCESS DESCRIPTION
4. INTEGRATION

Integration logic:
- Gaseous Ammonia is a common raw material
- Low pressure steam is available in ANS plant
- Process water is needed for absorption in NA plant and excess water is available in ANS plant

Gaseous Ammonia
- Ammonia for NA is
 - vaporized to cool down chilled water
 - superheated by MP Steam
- Ammonia for ANS is vaporized by Process steam.

- Having a common vaporizer
 - Doubles the available chilled water for the NA plant and save some Process steam
- Having a common super-heater
 - increases the condensation of Process steam in ANS plant
 - reduces the consumption of MP Steam in NA plant

Reduction of investment cost
Reduction of steam consumption by 1.5 MTPH
4. INTEGRATION

Boiling Feed Water heating
- BFW is heated up to ~ 100°C through
 - one exchanger fed with clean process steam
 - one exchanger fed with process steam

Reduction of steam consumption by 4.6 MTPH
4. INTEGRATION

Tail gas preheater
- Preheating performed by MP steam
- BFW is hot

Tail gas preheater
- BFW can be used to preheat tail gas

Reduction of steam consumption by 2.6 MTPH
4. INTEGRATION

Process condensate recycle
- Process water is needed on NA absorption tower
- Acidic contaminated condensate is available in ANS
- Process condensate can partly replace process water

Reduction of Demin water consumption by 10 M³/H

4. INTEGRATION

ANS cooling
- Ammonium Nitrate Solution
 - 97% concentration,
 - boiling temperature ~ 190°C
 - crystallization temperature ~ 135°C
- For downstream process, temperature has to be decreased down to about 150°C.
- GP designed an MP steam generator

MP Steam Production is about 0.5 MTPH
5. CONCLUSION

SAVINGS

- investment cost => common equipment for both plants
- operation cost => much better energy efficiency
 high reduction of the demin.water demand

Resulting benefit in operating cost is more than 1000 k€/year.

LOW EMISSION:

- Recycling of contaminated process condensate to the absorption
 - not only reduces the consumption of demineralized water
 - but also provide a reduction of Nitrogen emissions
- Thus making the plants more environment friendly.
- Nitrogen emission to waste water treatment ~ 3 kg/day.
5. CONCLUSION

- Today, those two plants have been running for many years without any problem.

- The integration has been proven as reliable and efficient for the entire period.

Thank you for your attention